

Commercial Air Conditioners



# Service Manual

# Aqua Tempo Super II Series





# CONTENTS

| Part | 1 | General Information                       | . 3 |
|------|---|-------------------------------------------|-----|
| Part | 2 | Component Layout and Refrigerant Circuits | . 5 |
| Part | 3 | Control                                   | ٤5  |
| Part | 4 | Diagnosis and Troubleshooting             | 33  |





# Part 1

# **General Information**

| 1 Unit Capacities and External Appearance4 | ļ |
|--------------------------------------------|---|
| 2 Water outlet temperature range4          | ļ |

# **M-Thermal Mono**



# **1** Unit Capacities and External Appearance

Table 1-2.1: Aqua Tempo Super II unit capacity range and unit appearances

| Capacity                       | 30kW         | 60kW         |  |
|--------------------------------|--------------|--------------|--|
| Model                          | MC-SU30-RN1L | MC-SU30-RN1L |  |
| Appearance                     |              |              |  |
| Power supply 380-415V/3Ph/50Hz |              |              |  |

# 2 Water outlet temperature range

Table 1-2.1: Aqua Tempo Super II unit water outlet temperature range

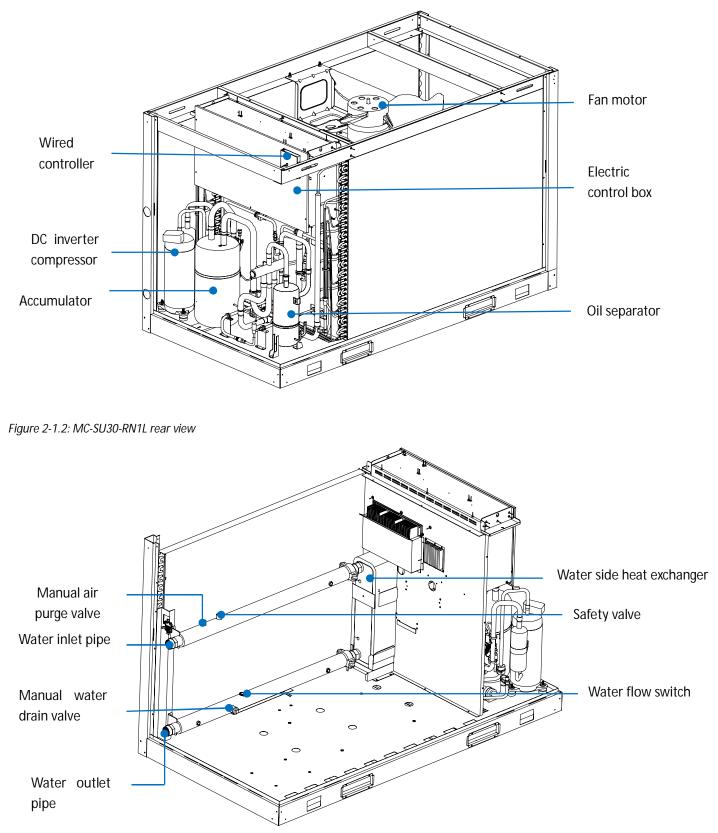
|         | Mode             | Range   |
|---------|------------------|---------|
| Cooling | Normal           | 5-20°C  |
| Cooling | Low water outlet | 0-20°C  |
| Heating | Normal           | 25-55°C |

Note:

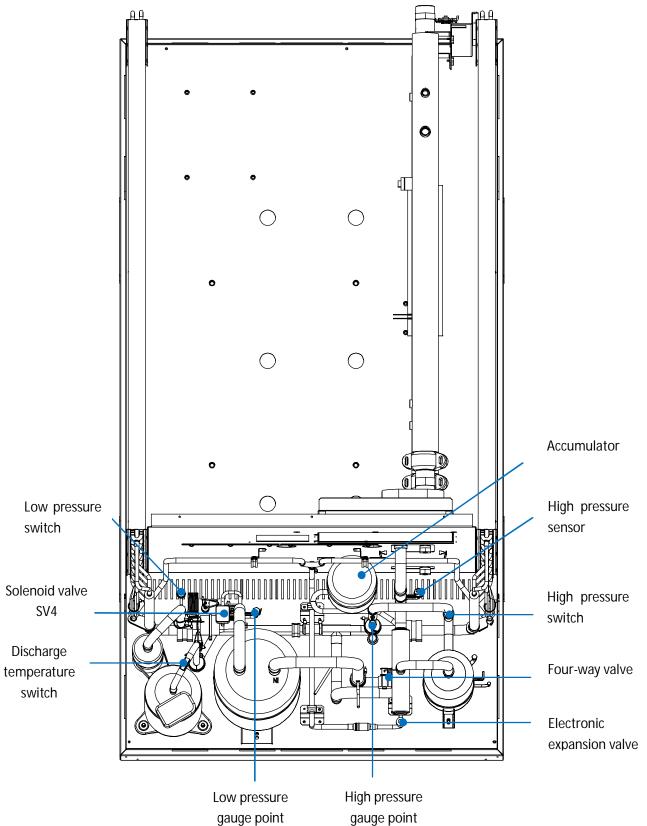
1. Use dial switch S5\_1 on the main PCB to select the water outlet temperature range.



# Part 2 Component Layout and Refrigerant Circuits


| 1 | Layout of Functional Components6 |
|---|----------------------------------|
| 2 | Piping Diagrams 10               |
| 3 | Refrigerant Flow Diagrams        |




# 1 Layout of Functional Components

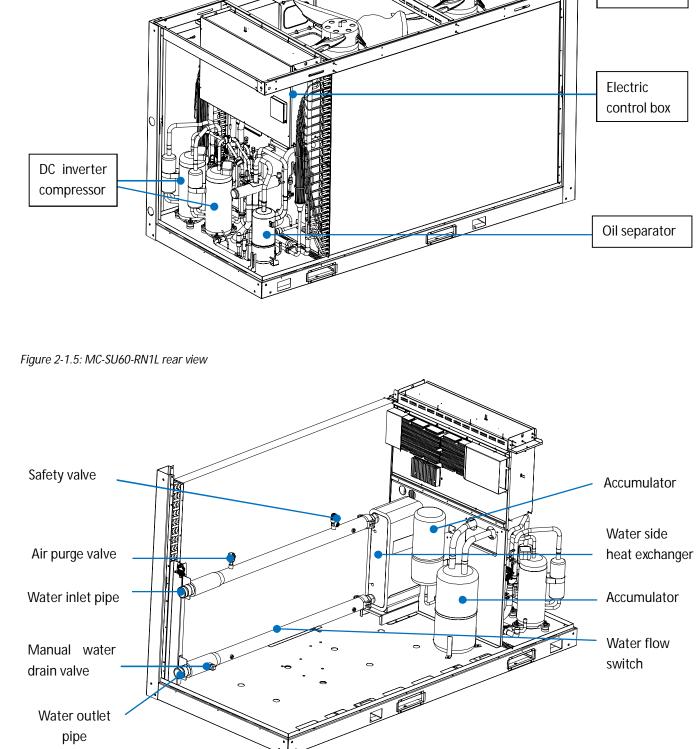

#### MC-SU30-RN1L

Figure 2-1.1: MC-SU30-RN1L front view









# Aqua Tempo Super II MC-SU60-RN1L

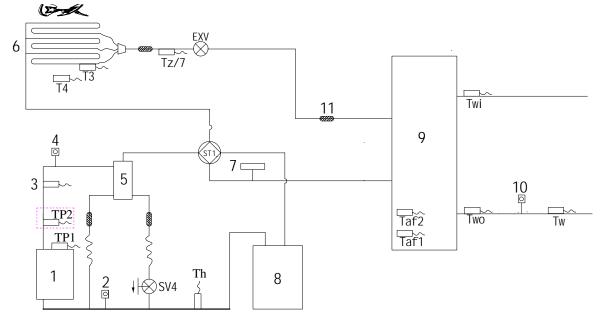
Figure 2-1.4: MC-SU60-RN1L front view



Fan motor

201612

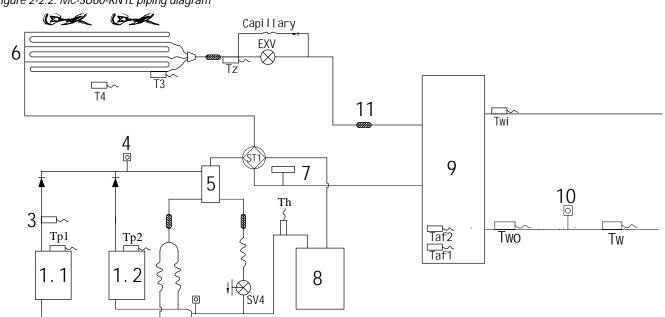



LA A A LAAA 5 ſ 0  $\bigcirc$  $\bigcirc$  $\bigcirc$ 9 0  $\bigcirc$ О Low pressure switch 8 ۲ ы High pressure 8 Solenoid sensor valve SV4 tuun High pressure switch Discharge temperature Four-way valve switch Electronic expansion valve Low pressure High pressure gauge point gauge point



# 2 Piping Diagrams

# MC-SU30-RN1L


Figure 2-2.1: MC-SU30-RN1L piping diagram



| Legend |                                      |      |                                                                     |
|--------|--------------------------------------|------|---------------------------------------------------------------------|
| 1      | Compressor                           | Tp1  | Discharge temperature sensor 1                                      |
| 2      | Low pressure switch                  | Tp2  | Discharge temperature sensor 2                                      |
| 3      | Discharge temperature control switch | Т3   | Air side heat exchanger refrigerant outlet temperature sensor       |
| 4      | High pressure switch                 | T4   | Outdoor ambient temperature sensor                                  |
| 5      | Oil separator                        | TZ/7 | Air side heat exchanger refrigerant total outlet temperature sensor |
| 6      | Air side heat exchanger              | Taf1 | Water side heat exchanger anti-freezing temperature sensor 1        |
| 7      | Pressure sensor                      | Taf2 | Water side heat exchanger anti-freezing temperature sensor 2        |
| 8      | Accumulator                          | Twi  | Water side heat exchanger water inlet temperature sensor            |
| 9      | Water side heat exchanger            | Two  | Water side heat exchanger water outlet temperature sensor           |
| 10     | Water flow switch                    | Tw   | Combined water outlet temperature sensor                            |
| 11     | Filter                               | Th   | Air suction temperature sensor                                      |
| EXV    | Electronic expansion valve           | SV4  | Oil return solenoid valve                                           |
| ST1    | 4-way valve                          |      |                                                                     |

Aqua Tempo Super II

MC-SU60-RN1L Figure 2-2.2: MC-SU60-RN1L piping diagram



| Legend |                                      |      |                                                                     |  |  |
|--------|--------------------------------------|------|---------------------------------------------------------------------|--|--|
| 1      | Compressor                           | Tp1  | Discharge temperature sensor 1                                      |  |  |
| 2      | Low pressure switch                  | Tp2  | Discharge temperature sensor 2                                      |  |  |
| 3      | Discharge temperature control switch | T3   | Air side heat exchanger refrigerant outlet temperature sensor       |  |  |
| 4      | High pressure switch                 | T4   | Outdoor ambient temperature sensor                                  |  |  |
| 5      | Oil separator                        | TZ/7 | Air side heat exchanger refrigerant total outlet temperature sensor |  |  |
| 6      | Air side heat exchanger              | Taf1 | Water side heat exchanger anti-freezing temperature sensor 1        |  |  |
| 7      | Pressure sensor                      | Taf2 | Water side heat exchanger anti-freezing temperature sensor 2        |  |  |
| 8      | Accumulator                          | Twi  | Water side heat exchanger water inlet temperature sensor            |  |  |
| 9      | Water side heat exchanger            | Two  | Water side heat exchanger water outlet temperature sensor           |  |  |
| 10     | Water flow switch                    | Tw   | Combined water outlet temperature sensor                            |  |  |
| 11     | Filter                               | Th   | Air suction temperature sensor                                      |  |  |
| EXV    | Electronic expansion valve           | SV4  | Oil return solenoid valve                                           |  |  |
| ST1    | 4-way valve                          |      |                                                                     |  |  |



Key components:

1. Compressor

Maintains pressure differential between high and low pressure sides of the refrigerant system.

2. Fan

Ventilates the air side heat exchanger.

3. Oil separator:

Separates oil from gas refrigerant pumped out of the compressor and quickly returns it to the compressor. Separation efficiency is up to 99%.

4. Accumulator:

Stores liquid refrigerant and oil to protect the compressor from liquid hammering.

5. Electronic expansion valve (EXV):

Controls refrigerant flow and reduces refrigerant pressure.

6. Four-way valve:

Controls refrigerant flow direction. Closed in cooling mode and open in heating mode. When closed, the air side heat exchanger functions as a condenser and water side heat exchanger functions as an evaporator; when open, the air side heat exchanger functions as an evaporator and water side heat exchanger function as a condenser.

- High and low pressure switches: Regulate refrigerant system pressure. When the refrigerant system pressure rises above the upper limit or falls below the lower limit, the high or low pressure switches turn off, stopping the compressor.
- 8. Discharge temperature switch:
- Protects the compressor from abnormally high temperatures and transient spikes in temperature.
- 9. Air purge valve:

Automatically removes air from the water circuit.

10. Safety valve

Prevents excessive water pressure by opening at 43.5psi (3bar) and discharging water from the water circuit.

11. Water flow switch:

Detects water flow rate to protect the compressor and water pump in the event of insufficient water flow.

12. Water pump:

Circulates water in the water circuit.

- 13. Pressure sensor
  - Measures refrigerant system pressure.
- 14. Crankcase heater

Prevents refrigerant from mixing with compressor oil when the compressors are stopped.

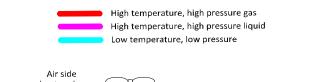
15. Water side heat exchanger electric heater

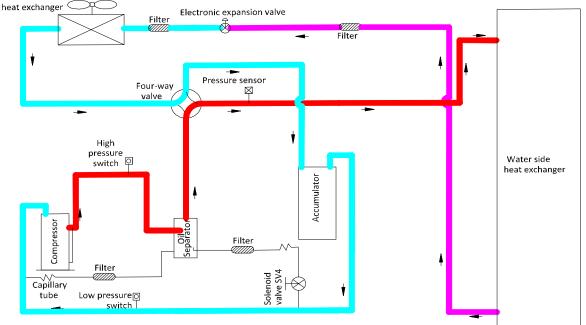
Protects the water side heat exchanger from ice formation.

16. Water flow switch electric heater:

Provides additional heating when heating capacity provided by the heat pump is insufficient due to low ambient temperatures, it also protects external water pipes from freezing.

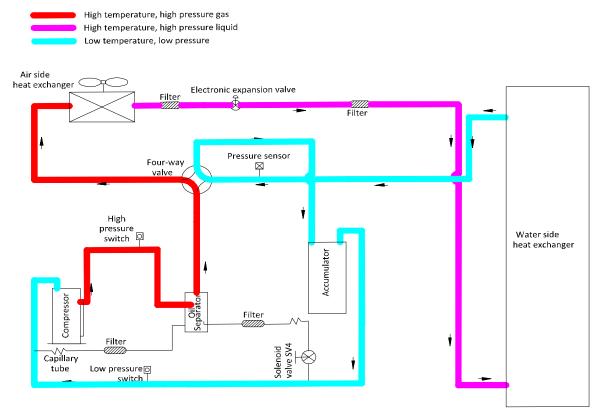
17. Solenoid valve SV4


Returns oil to the compressor. It opens after 17 minutes of compressor operation, closes after 3 minutes, then opens again for 3 minutes at 17 minute increments.




# 3 Refrigerant Flow Diagrams

#### Heating operation


Figure 2-3.1: Refrigerant flow during heating operation





#### Cooling and defrosting operation

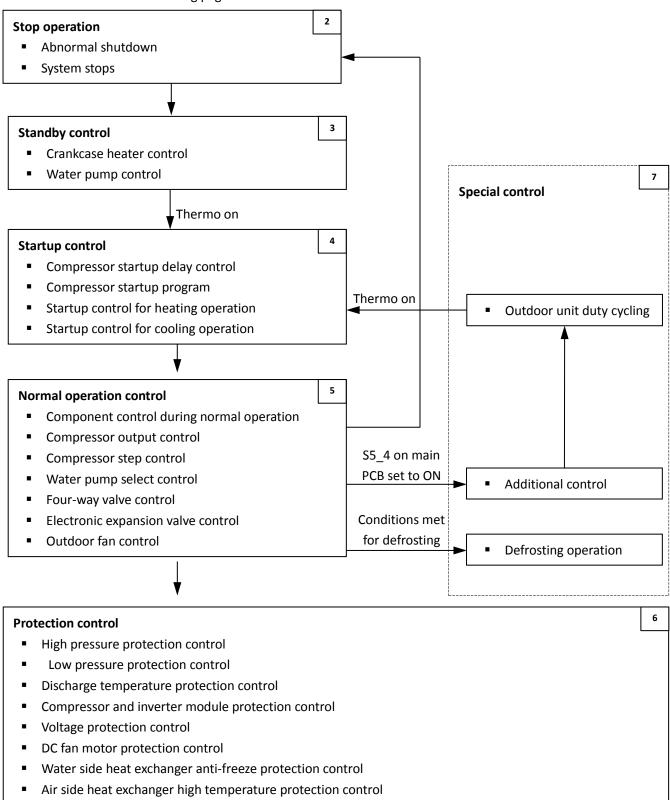
Figure 2-3.2: Refrigerant flow during cooling and defrosting operations







# Part 3


# Control

| 1 | General Control Scheme Flowchart                 | 16 |
|---|--------------------------------------------------|----|
| 2 | Stop Operation                                   | 17 |
| 3 | Standby Control                                  | 17 |
| 4 | Startup Control                                  | 18 |
| 5 | Normal Operation Control                         | 20 |
| 6 | Protection Control                               | 23 |
| 7 | Special Control                                  | 29 |
| 8 | Role of Temperature Sensors in Control Functions | 31 |



#### **1** General Control Scheme Flowchart

Sections 3-2 to 3-7 on the following pages detail when each of the controls in the flowchart below is activated.



Water side heat exchanger temperature difference protection control

Note:

1. Numbers in the top right-hand corners of boxes indicate the relevant section of text on the following pages.



# 2 Stop Operation

Midea

The stop operation occurs for one of the following reasons:

- 1. Abnormal shutdown: in order to protect the compressors, if an abnormal state occurs the system makes a 'stop with thermo off' operation and an error code is displayed on the outdoor unit's PCB digital displays and on the user interface.
- 2. The system stops when the set temperature has been reached.

#### **3 Standby Control**

#### 3.1 Crankcase Heater Control

The crankcase heater is used to prevent refrigerant from mixing with compressor oil when the compressors are stopped. The crankcase heater is controlled according to the outdoor ambient temperature and discharge temperature. When the outdoor ambient temperature is above 40°C, the crankcase heater is off; when the outdoor ambient temperature is below 35°C, the crankcase heater is controlled according to discharge temperature. Refer to Figures 3-3.1 and 3-3.2.

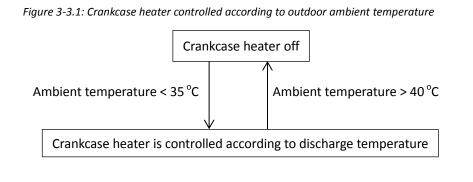
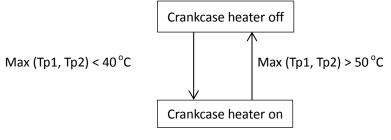




Figure 3-3.2: Crankcase heater controlled according to discharge temperature



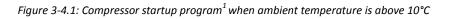
Notes:

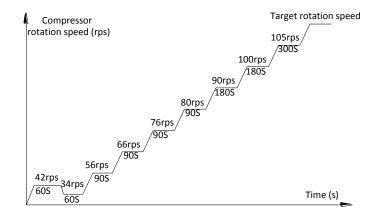
1. Tp1: discharge temperature sensor 1, Tp2: discharge temperature sensor 2.

#### 3.2 Water Pump Control

When the outdoor unit is in standby, the circulator pumps run continuously  $_{\circ}$ 



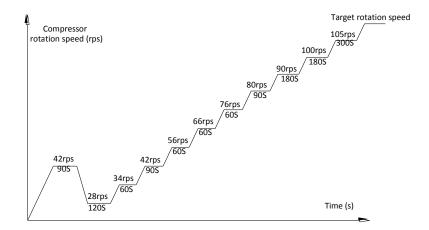

## 4 Startup Control


#### 4.1 Compressor Startup Delay Control

In initial startup control and restart control (except in defrosting operation), compressor startup is delayed such that a minimum 7 minutes has elapsed since the compressor stopped, in order to prevent frequency compressor on/off and to equalize the pressure within the refrigerant system.

#### 4.2 Compressor Startup Program

In initial startup control and in re-start control, compressor startup is controlled according to outdoor ambient temperature and discharge temperature. Compressor startup follows one of two startup programs until the target rotation speed is reached. Refer to Figures 3-4.1, 3-4.2.






Notes:

1. Once the first, 60-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

Figure 3-4.2: Compressor startup program<sup>1</sup> when ambient temperature is at or below 10°C



Notes:

1. Once the first, 90-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

#### 4.3 Startup Control for Heating Operation

Table 3-4.1: Component control during startup in heating mode

| Component                          | Wiring diagram<br>label | 30kW | 60kW | Control functions and states                                                                                                    |
|------------------------------------|-------------------------|------|------|---------------------------------------------------------------------------------------------------------------------------------|
| Inverter compressor A              | COMP A                  | •    | •    | Compressor startup program selected according to                                                                                |
| Inverter compressor B              | COMP B                  |      | •    | ambient temperature and discharge temperature <sup>1</sup>                                                                      |
| DC fan motor A                     | FAN A                   | ٠    | •    |                                                                                                                                 |
| DC fan motor B                     | FAN B                   |      | •    | <ul> <li>Controlled according to ambient temperature</li> </ul>                                                                 |
| Electronic expansion valve         | EXV 1                   | •    | •    | Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, unit capacity. |
| Four-way valve                     | STF1                    | •    | •    | On after the compressor startup for 10s                                                                                         |
| Solenoid valve (oil balance)       | SV4_1                   | ٠    | •    | Closed for 200s, open for 600s, then closed                                                                                     |
| Water pump1                        | PUPM1                   | •    | •    | - On                                                                                                                            |
| Water pump2                        | PUPM2                   | ٠    | •    | - OII                                                                                                                           |
| Water side heat exchanger heater 1 | EVA-HEAT 1              | ٠    | •    | According to water side heat exchanger                                                                                          |
| Water side heat exchanger heater 2 | EVA-HEAT 2              |      | •    | anti-freezing temperature (Taf)                                                                                                 |
| Water flow switch heater           | W-HEAT1                 | •    | •    | Controlled according to ambient temperature, water inlet temperature and water outlet temperature                               |
| Electric auxiliary heater          | E-HEAT_L/<br>E-HEAT_N   | •    | •    | Controlled according to ambient temperature and total water outlet temperature after the compressor is on                       |
| Crank case heater 1                | HEAT1                   | •    | •    | Controlled according to ambient temperature and                                                                                 |
| Crank case heater 2                | HEAT2                   |      | •    | discharge temperature                                                                                                           |

Notes:

1. Refer to Figure 3-4.1, Figure 3-4.2 and in Part 3, 4.2 "Compressor Startup Program".

#### 4.4 Startup Control for Cooling Operation

Table 3-4.2: Component control during startup in cooling mode

| Component                          | Wiring diagram<br>label | 30kW | 60kW | Control functions and states                                                                                                                    |
|------------------------------------|-------------------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverter compressor A              | COMP A                  | •    | •    | Compressor startup program selected according to                                                                                                |
| Inverter compressor B              | COMP B                  |      | •    | ambient temperature and discharge temperature <sup>1</sup>                                                                                      |
| DC fan motor A                     | FAN A                   | •    |      | Controlled according to air side heat exchanger                                                                                                 |
| DC fan motor B                     | FAN B                   |      | •    | refrigerant total outlet temperature (Tz/7)                                                                                                     |
| Electronic expansion valve         | EXV 1                   | •    | •    | Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, outdoor unit initial frequency |
| Four-way valve                     | STF1                    | •    | •    | Off                                                                                                                                             |
| Solenoid valve (oil balance)       | SV4_1                   | •    | •    | Closed for 200s, open for 600s, then closed                                                                                                     |
| Water pump1                        | PUPM1                   | •    | •    | On                                                                                                                                              |
| Water pump2                        | PUPM2                   |      |      | - OII                                                                                                                                           |
| Water side heat exchanger heater 1 | EVA-HEAT 1              | •    | •    | According to water side heat exchanger                                                                                                          |
| Water side heat exchanger heater 2 | EVA-HEAT 2              |      | •    | anti-freezing temperature (Taf)                                                                                                                 |
| Water flow switch heater           | W-HEAT1                 | •    | •    | Controlled according to ambient temperature, water inlet temperature and water outlet temperature                                               |
|                                    | E-HEAT_L/               | • •  |      | Off                                                                                                                                             |
| Electric auxiliary heat            | E-HEAT_N                |      | •    |                                                                                                                                                 |
| Crank case heater 1                | Heat 1                  | •    | •    | Controlled according to ambient temperature and                                                                                                 |
| Crank case heater 2                | Heat 2                  |      | •    | discharge temperature                                                                                                                           |

Notes:

1. Refer to Figure 3-4.1, Figure 3-4.2 and in Part 3, 4.2 "Compressor Startup Program".



# **5** Normal Operation Control

#### 5.1 Component Control during Normal Operation

Table 3-5.1: Component control during heating operation

| Component                          | Wiring diagram<br>label | 30kW | 60kW | Control functions and states                                                                                                                                                                                                                       |
|------------------------------------|-------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverter compressor A              | COMP A                  | •    | •    |                                                                                                                                                                                                                                                    |
| Inverter compressor B              | COMP B                  |      | •    | Controlled according to load requirement                                                                                                                                                                                                           |
| DC fan motor A                     | FAN A                   | •    | •    | Controlled according to air side heat exchanger pipe                                                                                                                                                                                               |
| DC fan motor B                     | FAN B                   |      | •    | temperature and discharge pressure                                                                                                                                                                                                                 |
| Electronic expansion valve         | EXV 1                   | •    | •    | Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge superheat and compressor frequency, and use suction temperature, air side heater exchanger temperature, discharge temperature to modify the control. |
| Four-way valve                     | STF1                    | ٠    | •    | On                                                                                                                                                                                                                                                 |
| Solenoid valve (oil balance)       | SV4_1                   | ٠    | •    | Open regularly                                                                                                                                                                                                                                     |
| Water pump1                        | PUPM1                   | ٠    | •    | On                                                                                                                                                                                                                                                 |
| Water pump2                        | PUPM2                   | ٠    | •    | 01                                                                                                                                                                                                                                                 |
| Water side heat exchanger heater 1 | EVA-HEAT 1              | ٠    | •    | Off                                                                                                                                                                                                                                                |
| Water side heat exchanger heater 2 | EVA-HEAT 1              |      | •    | Off                                                                                                                                                                                                                                                |
| Water flow switch heater           | W-HEAT1                 | •    | •    | Off                                                                                                                                                                                                                                                |
| Electric auxiliary heater          | E-HEAT_L/<br>E-HEAT_N   | •    | •    | Controlled according to ambient temperature                                                                                                                                                                                                        |
| Crank case heater 1                | HEAT1                   | •    | •    | 04                                                                                                                                                                                                                                                 |
| Crank case heater 2                | HEAT2                   |      | •    | - Off                                                                                                                                                                                                                                              |

Table 3-5.2: Component control during cooling operation

| Component                          | Wiring diagram<br>label | 30kW | 60kW | Control functions and states                                                                                                                             |
|------------------------------------|-------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inverter compressor A              | COMP A                  | •    | •    |                                                                                                                                                          |
| Inverter compressor B              | COMP B                  |      | •    | Controlled according to load requirement                                                                                                                 |
| DC fan motor A                     | FAN A                   | •    | •    | Controlled according to air side heat exchanger                                                                                                          |
| DC fan motor B                     | FAN B                   |      | •    | refrigerant total outlet temperature (Tz/7)                                                                                                              |
| Electronic expansion valve         | EXV 1                   | •    | •    | Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to suction superheat, water inlet temperature and compressor frequency. |
| Four-way valve                     | STF1                    | •    | •    | Off                                                                                                                                                      |
| Solenoid valve (oil balance)       | SV4_1                   | •    | •    | Open regularly                                                                                                                                           |
| Water pump1                        | PUPM1                   | •    | •    | 0.                                                                                                                                                       |
| Water pump2                        | PUPM2                   | •    | •    | On                                                                                                                                                       |
| Water side heat exchanger heater 1 | EVA-HEAT 1              | •    | •    | According to water side heat exchanger                                                                                                                   |
| Water side heat exchanger heater 2 | EVA-HEAT 2              |      | •    | anti-freezing temperature (Taf)                                                                                                                          |
| Water flow switch heater           | W-HEAT1                 | •    | •    | Off                                                                                                                                                      |
|                                    | E-HEAT_L/               |      |      |                                                                                                                                                          |
| Electric auxiliary heater          | E-HEAT_N                | •    | •    | Off                                                                                                                                                      |
| Crank case heater 1                | HEAT1                   | •    | •    | Off                                                                                                                                                      |
| Crank case heater 2                | HEAT2                   |      | •    |                                                                                                                                                          |

Midea Aqua Tempo Super II Service Manual

# Midea

#### 5.2 Compressor Output Control

The compressor rotation speed is controlled according to the load requirement. Before compressor startup, the outdoor unit determines the compressor target speed according to outdoor ambient temperature, discharge temperature and then runs the appropriate compressor startup program. Refer to Part 3, 4.2 "Compressor Startup Program". Once the startup program is complete, the compressor runs at the target rotation speed.

The compressor speed is controlled according to two parts in normal operation:

In cooling mode: In a single system, the compressor speed is controlled according to the water outlet temperature and water outlet setting temperature. In a combination system, the compressor of master unit is controlled according total water outlet temperature and water outlet setting temperature, the compressor of the slave unit is controlled according to water inlet and water outlet temperature. Both in a single system and combination system, the compressor speed is limited by\_the inverter module temperature (Tf), ambient temperature, discharge temperature and air side heat exchanger refrigerant total outlet temperature (Tz/7).

In heating mode: In a single system, the compressor speed is controlled according to the water outlet temperature and water outlet setting temperature. In a combination system, all compressors are controlled according to the total water outlet temperature and the water outlet setting temperature. Both in a single system and combination system, the compressor speed is limited by inverter module temperature (Tf), ambient temperature, discharge temperature, discharge pressure.

#### 5.3 Compressor Step Control

The running speed of six-pole compressors in rotations per second (rps) is one third of the frequency (in Hz) of the electrical input to the compressor motor. The frequency of the electrical input to the compressor motors can be altered at a rate of 1Hz in two seconds.

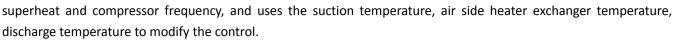
#### 5.4 Water pump select control

When the dial switch S5\_3 on the main PCB is switched ON, the system runs "one small pump per unit" mode, when S5\_3

is switched OFF, the system run "one large pump controlled by master unit" mode.

- One pump control: only the master unit output pump signal, no pump signal output on the slave units.
- Multiple pump control: output pump signal on all units.
- S5\_3 in one system must be switched to the same position or not error code FP\_will be displayed.

#### 5.5 Four-way Valve Control


The four-way valve is used to change the direction of refrigerant flow through the water side heat exchanger in order to switch between cooling and heating operations. Refer to Figures 2-3.1 and 2-3.2 in Part 2, 3 "Refrigerant Flow Diagrams".

During heating operation, the four-way valve is on; during cooling and defrosting operation, the four-way valve is off.

#### 5.6 Electronic Expansion Valve Control

The position of the electronic expansion valve (EXV) is controlled in steps from 0 (fully closed) to 480 (fully open).

- At power-on:
- The EXV first closes fully, then moves to the standby position (352 (steps)). After 30seconds the EXV moves to an initial running position, which is determined according to\_the operating mode and outdoor ambient temperature.
- When the unit operate in cooling mode, after 60 seconds, the EXV is controlled according to suction superheat, water inlet temperature and compressor frequency.
- When the unit operates in heating mode, after a further 60 seconds, the EXV is controlled according to discharge



- When the outdoor unit is in standby:
  - The EXV is at position 352 (steps).
- When the outdoor unit stops:
  - The EXV first closes fully, then moves to the standby position (352 (steps)).

#### 5.7 Outdoor Fan Control

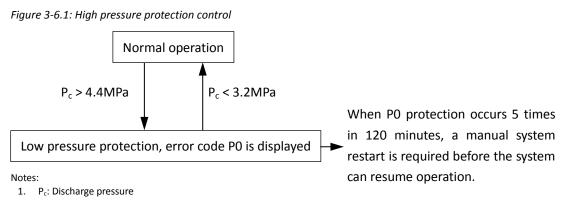
The speed of the outdoor unit fan(s) is adjusted in steps, as shown in Table 3-5.3.

Table 3-5.3: Outdoor fan speed steps

|                       | Fan speed (rpm) |       |       |  |  |
|-----------------------|-----------------|-------|-------|--|--|
| Fan speed index       | 30kW            | 60kW  |       |  |  |
|                       | FAN A           | FAN A | FAN B |  |  |
| 0                     | 0               | 0     | 0     |  |  |
| 1                     | 150             | 150   | 0     |  |  |
| 2                     | 200             | 200   | 0     |  |  |
| 3                     | 250             | 250   | 0     |  |  |
| 4                     | 300             | 300   | 250   |  |  |
| 5                     | 360             | 360   | 300   |  |  |
| 6                     | 430             | 430   | 360   |  |  |
| 7                     | 480             | 530   | 460   |  |  |
| 8 (super silent mode) | 530             | 650   | 580   |  |  |
| 9                     | 650             | 760   | 680   |  |  |
| 10(silent mode)       | 710             | 850   | 800   |  |  |
| 11                    | 800             | 900   | 850   |  |  |
| 12(standard ESP mode) | 820             | 950   | 900   |  |  |

Abbreviations:

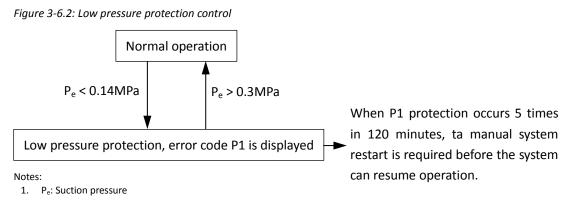
ESP: External static pressure


lidea



### **6 Protection Control**

#### 6.1 High Pressure Protection Control

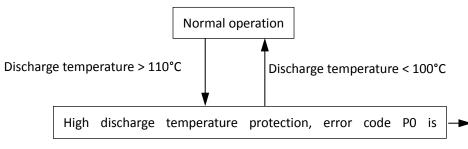

This control protects the refrigerant system from abnormally high pressure and protects the compressor from transient spikes in pressure.



When the discharge pressure rises above 4.4MPa the system displays P0 protection and all units stop running. When the discharge pressure drops below 3.2MPa, the compressor enters re-start control.

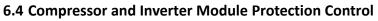
#### 6.2 Low Pressure Protection Control

This control protects the refrigerant system from abnormally low pressure and protects the compressor from transient drops in pressure.



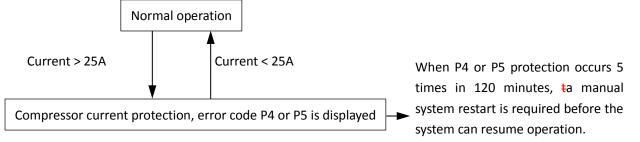

When the suction pressure drops below 0.14MPa the system displays P0 protection and all the units stop running. When the suction pressure rises above 0.3MPa, the compressor enters re-start control.

#### 6.3 Discharge Temperature Protection Control


This control protects the compressor from abnormally high temperatures and transient spikes in temperature.

*Figure 3-6.3: High discharge temperature protection control* 



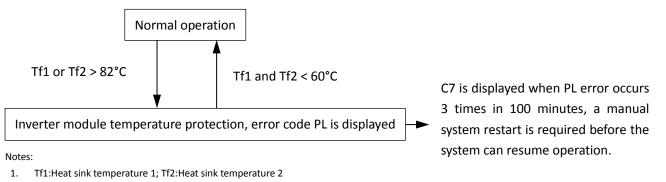

When P0 protection occurs 5 times in 120 minutes, ta manual system restart is required before the system can resume operation.

When the discharge temperature rises above 110°C the system displays PO protection and all the units stop running. When the discharge temperature drops below 100°C, the compressor enters re-start control.



This control protects the compressors from abnormally high currents and protects the inverter modules from abnormally high temperatures. It is performed for each compressor and inverter module.

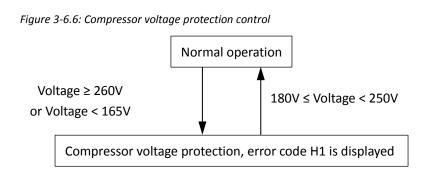
Figure 3-6.4: Compressor current protection control




Notes:

1. P4 is the protection for the power supply phase B, P5 is the protection for the power supply phase C.

When the compressor current rises above25A, the system displays P4 or P5 protection and all the units stop running. When the compressor current drops below 25A, the compressor enters re-start control.


Figure 3-6.5: Inverter module temperature protection control



When the Tf1 or Tf2 temperature rises above 82°C, the system displays PL protection and all the units stop running. When the Tf1 and Tf2 temperature drops below 60°C, the compressor enters re-start control.

#### 6.5 Voltage Protection Control

This control protects the units from abnormally high or abnormally low voltages.



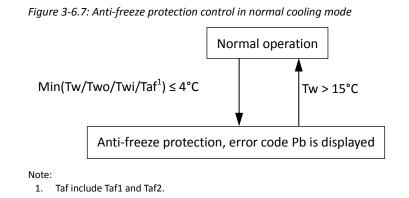
When the phase voltage of AC power supply is at or above 260V for more than 30 seconds, the system displays H1 protection and all the units stop running. When the phase voltage drops below 250V for more than 30 seconds, the units restart once the compressor re-start delay has elapsed. When the phase voltage is below 165V for more than 30 seconds, the system displays H1 protection and all the units stop running. When the AC voltage rises to at or above 180V for more than 30 seconds, the refrigerant system restarts once the compressor re-start delay has elapsed.

Midea

# ۸idea

# Aqua Tempo Super II

#### 6.6 DC Fan Motor Protection Control


This control protects the DC fan motors from abnormal power supply. DC fan motor protection occurs when the fan module does not receive any feedback from the fan motor.

When DC fan motor protection control occurs the system displays the PU error code and the unit stops running. When PU protection occurs 2 times in 120 minutes, the FF error is displayed. When an FF error occurs, a manual system restart is required before the system can resume operation.

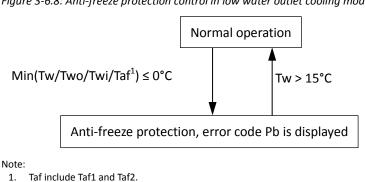
#### 6.7 Water Side Heat Exchanger Anti-freeze Protection Control

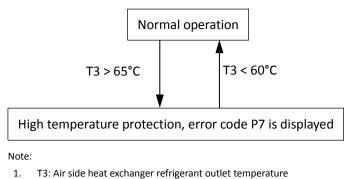
This control protects the water side heat exchanger from ice formation. The water side heat exchanger electric heater is controlled according to water side heat exchanger anti-freezing temperature (Taf), water inlet temperature (Twi), water outlet temperature (Two) and total water outlet temperature (Tw).

When water side heat exchanger anti-freeze protection occurs the system displays error code Pb and all the units stop running.

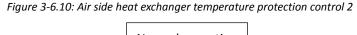


In standby or normal cooling mode, either water side heat exchanger anti-freezing temperature (Taf), water inlet temperature (Twi), water outlet temperature (Two) or total water outlet temperature (Tw) is below 4°C, the unit will run heating mode, until the total water outlet temperature is above 15°C, and restart the normal operation.





Figure 3-6.8: Anti-freeze protection control in low water outlet cooling mode

In low water outlet cooling mode, either water side heat exchanger anti-freezing temperature (Taf), water inlet temperature (Twi), water outlet temperature (Two) or total water outlet temperature (Tw) is below 0°C, the unit will run heating mode, until the total water outlet temperature is above 15°C, and restart the normal operation.


#### 6.8 Air Side Heat Exchanger High Temperature Protection Control

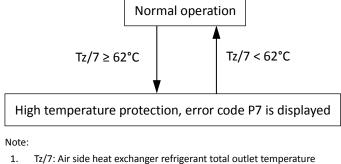
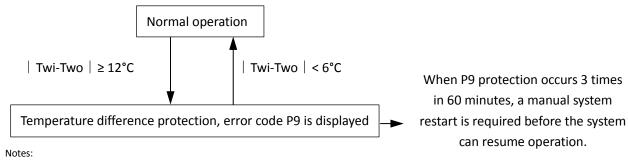

This control protects the air side heat exchanger from high temperature.

Figure 3-6.9: Air side heat exchanger high temperature protection control 1



When the air side heat exchanger refrigerant outlet temperature (T3) rises above 65°C, the system displays P7 protection and all the units stop running. When the air side heat exchanger refrigerant outlet temperature (T3) drops below 60°C, the compressor enters re-start control.






When the air side heat exchanger refrigerant total outlet temperature (Tz/7) temperature rises at or above 62°C, the system displays P7 protection and the unit stops running. When the air side heat exchanger refrigerant total outlet temperature (Tz/7) temperature drops below 62°C, the compressor enters re-start control.

#### 6.9 Water Side Heat Exchanger Temperature Difference Protection Control

This control protects the water side heat exchanger from ice formation.

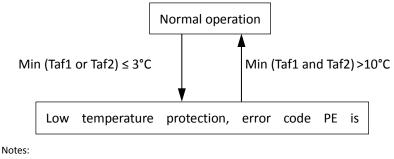
Figure 3-6.11: Water side heat exchanger temperature difference protection control



1. Twi: Water side heat exchanger inlet temperature

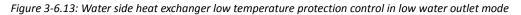
2. Two: Water side heat exchanger outlet temperature

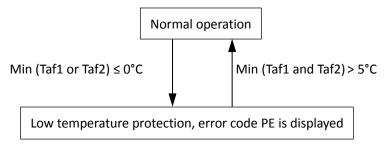

When the temperature difference rises at or above 12°C, the system displays P9 protection and all the units stop running. When the Temperature difference drops below 6°C, the compressor enters re-start control.


**lide**a



#### 6.10 Water Side Heat Exchanger Low Temperature Protection Control


This control protects the water side heat exchanger from ice formation.



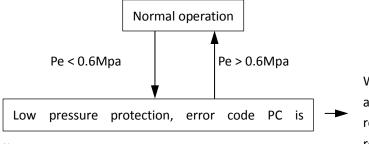



- 1. Taf1: Water side heat exchanger anti-freezing temperature1
- 2. Taf2: Water side heat exchanger anti-freezing temperature2

When water side heat exchanger anti-freezing temperature1 (Taf1) or water side heat exchanger anti-freezing temperature2 (Taf2) is at or below 3°C for more than 3 seconds, the system displays PE protection and the corresponding unit stop running. When water side heat exchanger anti-freezing temperature1 (Taf1) and Water side heat exchanger anti-freezing temperature2 (Taf2) rise to 10°C or higher, the compressor enters re-start control. Use the user interface to clear the error.





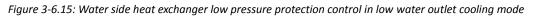

When water side heat exchanger anti-freezing temperature1 (Taf1) or water side heat exchanger anti-freezing temperature2 (Taf2) is at or below 0°C for more than 3 seconds, the system displays PE protection and orders the corresponding units to stop running. When water side heat exchanger anti-freezing temperature1 (Taf1) and Water side heat exchanger anti-freezing temperature1 (Taf2) rise to 5°C or higher, the compressor enters re-start control. Use the user interface to clear the error.

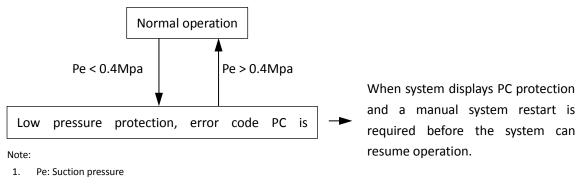
#### 6.11 Water Side Heat Exchanger Low Pressure Protection Control



This control protects the water side heat exchanger from ice formation.

Figure 3-6.14: Water side heat exchanger low pressure protection control in normal cooling mode





When system displays PC protection and a manual system restart is required before the system can resume operation.

Note:

1. Pe: Suction pressure

In normal cooling mode, when the suction pressure drops below 0.6Mpa, the system displays PE protection and all the units stop running. When the suction pressure is above 0.6Mpa or higher, the compressor enters re-start control. It will not display the PC error when the suction pressure drops below 0.6Mpa for the first time until the suction pressure drops below 0.6Mpa for the second time in 30 minutes.



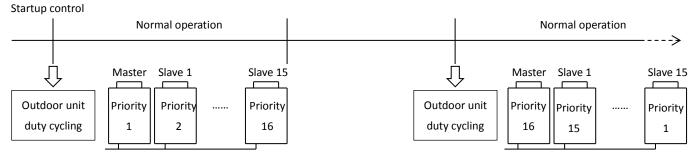


In low water outlet cooling mode, when the suction pressure drops below 0.4Mpa, the system displays PE protection and all the units stop running. When the suction pressure is above 0.4Mpa or higher, the compressor enters re-start control. It will not display the PC error when the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the first time until the suction pressure drops below 0.4Mpa for the second time in 30 minutes.

# **7** Special Control

#### 7.1 Outdoor Unit Duty Cycling

In systems with multiple outdoor units, outdoor unit duty cycling is used to balance the compressor running time.


Outdoor unit duty cycling occurs whenever all the outdoor units stop running (either because the leaving water set temperature has been reached or because a master unit error has occurred):

- When the outdoor units are powered on for the first time, if there is a load requirement, the units turn on, starting with the master unit. As the leaving water temperature approaches its set temperature, units shut down in succession, starting with the unit with the highest address. Once the set temperature has been reached, the master unit shuts down.
- The next time a load requirement exists (or, following a master unit error), the units turn on, starting with the unit with the highest address. As the leaving water temperature approaches its set temperature, units shut down in succession, starting with the unit with the lowest address (the master unit). Once the set temperature has been reached, the unit with the highest address shuts down.

# Figure 3-7.1 shows an example of duty cycling in a system with 16 outdoor units.

Figure 3-7.1: Duty cycling in a system with 16 outdoor units<sup>1</sup>

After defrosting operation or on restart following compressor stop after set temperature s reached



Notes:

1. The address settings on the outdoor unit main PCBs for master unit and slave unit do not change.

#### 7.2 Defrosting Operation

In order to recover heating capacity, the defrosting operation is conducted when the outdoor unit air side heat exchanger is performing as a condenser. The defrosting operation is controlled according to outdoor ambient temperature, air side heat exchanger refrigerant outlet temperature and the compressor running time.

The defrosting operation ceases when any one of the following three conditions occurs:

- Defrosting operation duration reaches 10 minutes.
- The air side heat exchanger refrigerant outlet temperature reaches the target temperature.
- The water outlet temperature is at or below 5°C.



Table 3-7.1: Component control during defrosting operation

| Component                          | Wiring diagram<br>label | 30kW | 60kW | Control functions and states                |  |
|------------------------------------|-------------------------|------|------|---------------------------------------------|--|
| Inverter compressor A              | COMP A                  | •    | •    | Dura at defeating an exting estation        |  |
| Inverter compressor B              | COMP B                  |      | •    | Runs at defrosting operation rotation speed |  |
| DC fan motor A                     | FAN A                   | •    | •    | Off                                         |  |
| DC fan motor B                     | FAN B                   |      | •    |                                             |  |
| Electronic expansion valve         | EXV 1                   | •    | •    | Full open                                   |  |
| Four-way valve                     | STF1                    | •    | •    | Off                                         |  |
| Solenoid valve (oil balance)       | SV4_1                   | •    | •    | Open regularly                              |  |
| Water pump1                        | PUPM1                   | •    | •    |                                             |  |
| Water pump2                        | PUPM2                   | •    | •    | ON                                          |  |
| Water side heat exchanger heater 1 | EVA-HEAT 1              | •    | •    | 0"                                          |  |
| Water side heat exchanger heater 2 | EVA-HEAT 2              |      | •    | Off                                         |  |
| Water flow switch heater           | W-HEAT1                 | •    | •    | Off                                         |  |
| Electric auxiliary heat            | E-HEAT_L                | •    | •    | According to ambient temperature            |  |
| Crank case heater 1                | HEAT1                   | •    | •    | Off                                         |  |
| Crank case heater 2                | HEAT2                   |      | •    |                                             |  |

#### 7.3 Additional control

When dial switch S5\_4 on main PCB is switched ON, additional control is valid, connect a controller or not is permissible.

When dial switch S5\_4 is switched OFF, additional control is invalid. This function is only valid on the master unit.

When dial switch S5\_4 is switched ON and disconnect a wired controller:

- The system ON/OFF state is controlled by the ON/OFF port (CN44 on the main PCB). Connecting this port, system on, disconnecting this port, system off.
- The mode of the system is controlled by the Cool/Heat port (CN44 on the main PCB). Connecting this port, system running heating mode, disconnecting this port, system running cooling mode.
- The default water outlet temperature setting in heating mode is 45°C and in cooling mode is 7°C. The default hysteresis temperature setting is 2°C.
- The network icon on the wired controlled flashes, frequency and "rctc" alternate display on main PCB .

When dial switch S5\_4 is switched ON and connect a wired controller, the water outlet temperature and hysteresis temperature can be set by the wired controller.



# 8 Role of Temperature Sensors in Control Functions

Table 3-8.1: Names and functions of the temperature sensors

| Number | Sensor name <sup>1</sup>                                                                                                 | Sensor<br>code | Mode    | Control functions                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------------------------|----------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Discharge pipe temperature sensor 1/ Discharge pipe temperature sensor 2                                                 | Тр1/Тр2        | Heating | <ul> <li>Crankcase heater control<sup>1</sup></li> <li>Electronic expansion valve control<sup>2</sup></li> <li>Compressor output control<sup>3</sup></li> <li>Discharge temperature protection control<sup>4</sup></li> </ul>                                                                                                       |
|        |                                                                                                                          |                | Cooling | <ul> <li>Crankcase heater control<sup>1</sup></li> <li>Compressor output control<sup>3</sup></li> <li>Discharge temperature protection control<sup>4</sup></li> </ul>                                                                                                                                                               |
| 2      | Outdoor ambient temperature sensor                                                                                       | Т4             | Heating | <ul> <li>Crankcase heater control<sup>1</sup></li> <li>Electric auxiliary heater control</li> <li>Water flow switch heater control</li> <li>Compressor output control<sup>3</sup></li> <li>Electronic expansion valve control<sup>2</sup></li> <li>Outdoor fan control<sup>5</sup></li> </ul>                                       |
|        |                                                                                                                          |                | Cooling | <ul> <li>Crankcase heater control<sup>1</sup></li> <li>Compressor output control<sup>3</sup></li> <li>Defrosting operation control<sup>6</sup></li> <li>Electronic expansion valve control<sup>2</sup></li> <li>Outdoor fan control<sup>5</sup></li> </ul>                                                                          |
| 3      | Air side heat exchanger refrigerant outlet temperature sensor                                                            | ТЗ             | Heating | <ul> <li>Outdoor fan control<sup>5</sup></li> <li>Electronic expansion valve control<sup>2</sup></li> </ul>                                                                                                                                                                                                                         |
|        |                                                                                                                          | 15             | Cooling | <ul> <li>Defrosting operation control<sup>6</sup></li> <li>Air side heat exchanger high<br/>temperature protection control<sup>7</sup></li> </ul>                                                                                                                                                                                   |
|        | Total cooling outlet temperature sensor                                                                                  |                | Heating | None                                                                                                                                                                                                                                                                                                                                |
| 4      |                                                                                                                          | TZ/7           | Cooling | <ul> <li>Outdoor fan control<sup>5</sup></li> <li>Compressor output control<sup>3</sup></li> <li>Air side heat exchanger high<br/>temperature protection control<sup>7</sup></li> </ul>                                                                                                                                             |
|        |                                                                                                                          |                | Heating | None  Water side heat exchanger heater                                                                                                                                                                                                                                                                                              |
| 5      | Water side heat exchanger anti-freezing temperature sensor1/Water side heat exchanger anti-freezing temperature sensor 2 | Taf1/<br>Taf2  | Cooling | <ul> <li>Water side heat exchanger neater<br/>control</li> <li>Water side heat exchanger anti-freeze<br/>protection control<sup>8</sup></li> <li>Water side heat exchanger low<br/>temperature protection control<sup>9</sup></li> </ul>                                                                                            |
| 6      | Suction pipe temperature sensor                                                                                          | Th             | Heating | Electronic expansion valve control <sup>2</sup>                                                                                                                                                                                                                                                                                     |
|        | Suction pipe temperature sensor                                                                                          |                | Cooling | <ul> <li>Electronic expansion valve control<sup>2</sup></li> </ul>                                                                                                                                                                                                                                                                  |
|        | Water inlet temperature sensor                                                                                           |                | Heating | Water flow switch heater control                                                                                                                                                                                                                                                                                                    |
| 7      |                                                                                                                          | Twi            | Cooling | <ul> <li>Electronic expansion valve control<sup>2</sup></li> <li>Compressor output control<sup>3</sup></li> <li>Water flow switch heater control</li> <li>Water side heat exchanger anti-freeze protection control<sup>8</sup></li> <li>Water side heat exchanger temperature difference protection control<sup>10</sup></li> </ul> |
| 8      | Water outlet temperature sensor                                                                                          |                | Heating | <ul> <li>Compressor output control<sup>3</sup></li> <li>Water flow switch heater control</li> </ul>                                                                                                                                                                                                                                 |
|        |                                                                                                                          | Two            | Cooling | <ul> <li>Compressor output control<sup>3</sup></li> <li>Defrosting operation control<sup>6</sup></li> <li>Water flow switch heater control</li> <li>Water side heat exchanger anti-freeze protection control<sup>8</sup></li> <li>Water side heat exchanger temperature difference protection control<sup>10</sup></li> </ul>       |

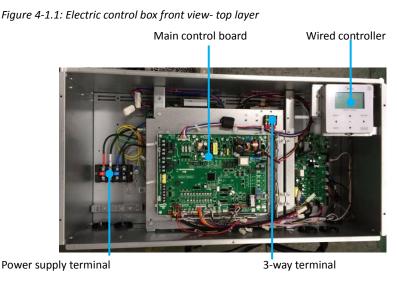
| Aqua <sup>·</sup> | Aqua Tempo Super II Midea                                                  |         |         |                                                                                                                                                                     |  |
|-------------------|----------------------------------------------------------------------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 9                 | Total water outlet temperature sensor                                      | Tw      | Heating | <ul> <li>Compressor output control<sup>3</sup></li> <li>Electric auxiliary heater control</li> </ul>                                                                |  |
|                   |                                                                            |         | Cooling | <ul> <li>Compressor output control<sup>3</sup></li> <li>Water side heat exchanger anti-freeze protection control<sup>8</sup></li> </ul>                             |  |
| 10                | Inverter module temperature sensor 1/ Inverter module temperature sensor 2 | Tf1/Tf2 | Heating | <ul> <li>Compressor output control<sup>3</sup></li> <li>Inverter module temperature<br/>protection<sup>11</sup></li> </ul>                                          |  |
|                   |                                                                            |         | Cooling | <ul> <li>Compressor output control<sup>3</sup></li> <li>Outdoor fan control<sup>5</sup></li> <li>Inverter module temperature<br/>protection<sup>11</sup></li> </ul> |  |

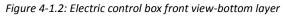
Notes:

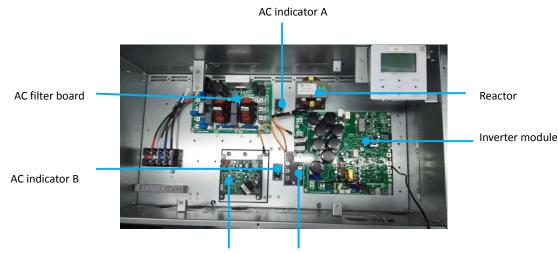
- 1. Refer to part 3, 3.1 "Crankcase Heater Control".
- 2. Refer to part 3, 5.6 "Electronic Expansion Valve Control".
- 3. Refer to part 3, 5.2 "Compressor Output Control".
- 4. Refer to part 3, 6.3 "Discharge Temperature Protection Control".
- 5. Refer to part 3, 5.7 "Outdoor Fan Control".
- 6. Refer to part 3, 7.2 "Defrosting Operation".
- 7. Refer to part 3, 6.8 "Air Side Heat Exchanger High Temperature Protection Control".
- 8. Refer to part 3, 6.7 "Water Side Heat Exchanger Anti-freeze Protection Control ".
- 9. Refer to part 3, 6.10 "Water Side Heat Exchanger Low Temperature Protection Control ".
- 10. Refer to part 3, 6.9 "Water Side Heat Exchanger Temperature Difference Protection Control ".
- 11. Refer to part 3, 6.4 "Compressor and Inverter Module Protection Control "
- 12. All sensor names in his service manual referring to refrigerant flow is named according refrigerant flow during cooling operation refer to part2,3 "Refrigerant Flow Diagram".



# 

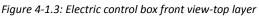

# Part 4 Diagnosis and Troubleshooting

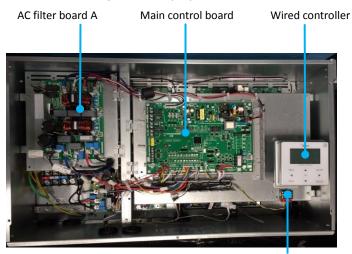

| 1 | Outdoor Unit Electric Control Box Layout | 34 |
|---|------------------------------------------|----|
| 2 | Outdoor Unit PCBs                        | 36 |
| 3 | Error Code Table                         | 47 |
| 4 | Troubleshooting                          | 49 |
| 5 | Appendix to Part 5                       | 95 |



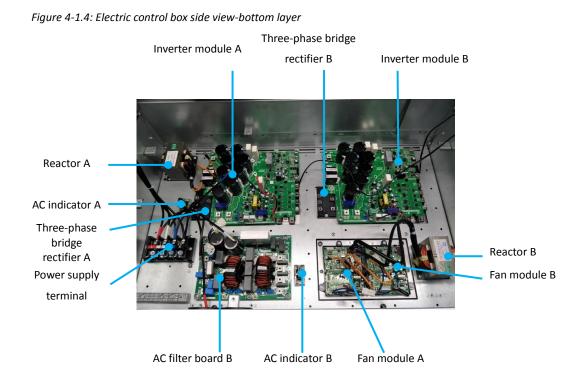

# 1 Outdoor Unit Electric Control Box Layout

#### MC-SU30-RN1L







Fan module Three-phase bridge rectifier







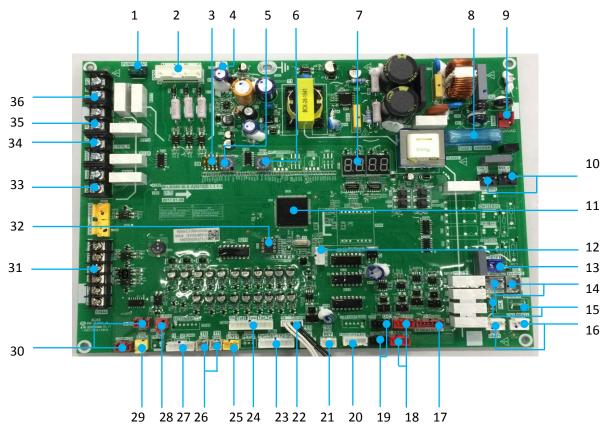
3-way terminal





## 2 Outdoor Unit PCBs

## 2.1 Types


Aqua Tempo Super II units have four PCBs – main control board, three phase AC filter board, DC fan inverter module board and compressor inverter module board.

In addition to the four PCBs, MC-SU30-RN1L model each has one board while MC-SU30-RN1L model have one main control board and the other boards each has two boards.

The locations of each PCB in the outdoor unit electric control boxes are shown in Figures 4-1.1 to 4-1.4 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".

#### 2.2 Main PCB

Figure 4-2.1: Outdoor unit main PCB



## Note:

1. Label descriptions are given in Table 4-2.1

Table 4-2.1:Outdoor unit main PCB

| Label in<br>Figure<br>4-2.1 | Code              | Content                                                                                                                                                                                                                                                                             | Voltage              |
|-----------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1                           | CN1               | Pump 1 connection                                                                                                                                                                                                                                                                   | 0-220V AC(varying)   |
| 2                           | CN30              | Power sequence detection connection                                                                                                                                                                                                                                                 | 380V                 |
| 3                           | S5                | DIP switches                                                                                                                                                                                                                                                                        | -                    |
| 4                           | CN72              | Power supply to user interface                                                                                                                                                                                                                                                      | 9V DC                |
| 5                           | ENC1              | Unit capacity dial switch                                                                                                                                                                                                                                                           | -                    |
| 6                           | ENC3              | Address dial switch                                                                                                                                                                                                                                                                 | -                    |
| 7                           | DSP1              | Digital display                                                                                                                                                                                                                                                                     | -                    |
| 8                           | FUS1              | Fuse                                                                                                                                                                                                                                                                                | 220V AC              |
| 9                           | CN43              | Power input                                                                                                                                                                                                                                                                         | 220V AC              |
| 10                          | CN12_1,<br>CN12_2 | Solenoid valve(SV4) drive ports                                                                                                                                                                                                                                                     | 0-220V AC(varying)   |
| 11                          | IC25              | Main control chip                                                                                                                                                                                                                                                                   | -                    |
| 12                          | CN64              | Debug port                                                                                                                                                                                                                                                                          | 5V DC                |
| 13                          | CN16              | Four-way valve drive port                                                                                                                                                                                                                                                           | 0-220V AC(varying)   |
| 14                          | CN5,<br>CN5 1     | Water side heat exchanger heater connections                                                                                                                                                                                                                                        | 0-220V AC(varying)   |
| 15                          | <br>CN4,<br>CN4_1 | Water flow switch heater connection                                                                                                                                                                                                                                                 | 0-220V AC(varying)   |
| 16                          | CN3<br>CN3_1      | Compressor crankcase heater connections                                                                                                                                                                                                                                             | 0-220V AC(varying)   |
| 17                          | CN49              | Reserved communication port                                                                                                                                                                                                                                                         | 2.5-2.7V DC          |
| 18                          | CN52<br>CN53      | Fan inverter module communication ports                                                                                                                                                                                                                                             | 2.5-2.7V DC          |
| 19                          | CN50<br>CN51      | Compressor inverter module communication ports                                                                                                                                                                                                                                      | 2.5-2.7V DC          |
| 20                          | CN55              | EXV drive port                                                                                                                                                                                                                                                                      | 12V DC               |
| 21                          | CN60<br>CN71      | Wired controller communication ports                                                                                                                                                                                                                                                | 2.5-2.7 DC           |
| 22                          | CN24              | Outdoor ambient temperature sensor and air side heat exchanger refrigerant                                                                                                                                                                                                          | 0-5V DC (varying)    |
| 23                          | CN69              | outlet temperature sensor connections<br>Water side heat exchanger anti-freezing temperature sensor 1, air side heat<br>exchanger refrigerant total outlet temperature sensor, discharge temperature<br>sensor 2 and discharge temperature sensor 1 connections                     | 0-5V DC (varying)    |
| 24                          | CN31              | Air suction temperature sensor, water side heat exchanger anti-freezing<br>temperature sensor 2, water side heat exchanger water outlet temperature<br>sensor, water side heat exchanger water inlet temperature sensor and combined<br>water outlet temperature sensor connections | 0-5V DC (varying)    |
| 25                          | CN40              | Pressure sensor connection                                                                                                                                                                                                                                                          | 0-5V DC (varying)    |
| 26                          | CN41              | Inverter module temperature sensor 1 and Inverter module temperature sensor 2                                                                                                                                                                                                       |                      |
| 26                          | CN42              | connections                                                                                                                                                                                                                                                                         | 0-5V DC (varying)    |
| 27                          | CN62              | AC indicator A and AC indicator B connections                                                                                                                                                                                                                                       | 0-5V DC (varying)    |
| 28                          | CN65              | Low pressure switch connection                                                                                                                                                                                                                                                      | 0 or 5V DC (varying) |
| 29                          | CN47              | High pressure switch and discharge temperature switch (es) connections                                                                                                                                                                                                              | 0 or 5V DC (varying) |
| 30                          | CN58<br>CN59      | AC filter board communication ports                                                                                                                                                                                                                                                 | 12V DC               |

| A | qua Te | Midea  |                                                                 |               |
|---|--------|--------|-----------------------------------------------------------------|---------------|
|   | 31     | CN44   | Water flow switch, additional control and Cool/heat connections | 0 or 12V DC   |
|   | 32     | IC10   | EEPROM                                                          | -             |
|   | 33     | CN21   | Remote alarm connection                                         | On/off signal |
|   | 34     | CN19_N | Electric auxiliary heater N line connection                     | On/off signal |
|   | 35     | CN19_L | Electric auxiliary heater N line connection                     | On/off signal |
|   | 36     | CN2    | Pump 2 connection                                               | On/off signal |

## 2.2.1 Main PCB field setting

Table 4-2.2: Main PCB switch settings

| Switch                    |      | Description                           | ON                                             | OFF                           | Default factory<br>setting |
|---------------------------|------|---------------------------------------|------------------------------------------------|-------------------------------|----------------------------|
|                           | S5-1 | Water outlet temperature <sup>1</sup> | Low                                            | Normal                        | OFF                        |
| S5                        | S5-2 | ON/OFF function                       | Activated                                      | Deactivated                   | OFF                        |
|                           | S5-3 | Water pump                            | One large pump<br>controlled by<br>master unit | One small<br>pump per<br>unit | OFF                        |
|                           | S5-4 | Reserved                              | -                                              | -                             | OFF                        |
|                           | ENC2 | 0: MC-SU30-RN1L                       | -                                              | -                             | 0                          |
| C<br>B<br>A<br>9 8 7<br>6 |      | 3: MC-SU60-RN1L                       | -                                              | -                             | 3                          |
|                           |      | 0: master unit                        | -                                              | -                             |                            |
| C                         | ENC1 | 1,2,3F: slave units                   | -                                              | -                             | 0                          |

Note:

1. Low water outlet temperature range: 0°C to 20°C; normal water outlet temperature range: 5°C to 20°C.

#### 2.2.2 Function of buttons SW3 to SW6

| Button | Function |             |
|--------|----------|-------------|
| SW3    | Up       |             |
| SW4    | Down     |             |
| SW5    | Menu     | SW3 SW3 SW4 |
| SW5    | Ok       | SW6 SW5     |

#### 2.2.3 SW2 system check button

Before pressing SW3 or SW4, allow the system to operate steadily for more than an hour. On pressing SW4, the parameters listed in Table 4-2.4 will be displayed in sequence.

Table 4-2.4: SW4 system check

| Number | er Parameters displayed on digital display Remarks |                                              |
|--------|----------------------------------------------------|----------------------------------------------|
|        |                                                    | Standby: ODU address (DSP1 display) + number |
|        |                                                    | of on-line units (DSP2 display)              |
| 0      | Operating status                                   | On: display frequency                        |
|        |                                                    | Defrosting: dF and operating frequency flash |
|        |                                                    | alternately at 1s intervals frequency        |

201709

| Mic | idea Aqua Tempo Super I                                                  |                                                                  |  |  |
|-----|--------------------------------------------------------------------------|------------------------------------------------------------------|--|--|
|     |                                                                          | Anti-freezing protection: Pb and operating                       |  |  |
|     |                                                                          | frequency flash alternately at 1s intervals                      |  |  |
| 1   | Outdoor unit address                                                     | Actual value = value displayed                                   |  |  |
| 2   | Outdoor unit capacity                                                    | 0:30KW; 3:60KW                                                   |  |  |
| 3   | Number of outdoor units (main unit display)                              | Actual value = value displayed                                   |  |  |
| 4   | Unit capacity corrected for ambient temperature                          | Actual value = value displayed                                   |  |  |
| 5   | Operating mode                                                           | 8: Off; 0: Standby; 1: Cooling; 2: Heating                       |  |  |
| 6   | Fan A speed index                                                        | Refer to Note1                                                   |  |  |
| 7   | Fan B speed index                                                        | Refer to Note1                                                   |  |  |
| 8   | Air side heat exchanger refrigerant outlet temperature (sensor T3)       | Actual value = value displayed                                   |  |  |
| 9   | Outdoor ambient temperature (sensor T4)                                  | Actual value = value displayed                                   |  |  |
| 10  | Reserved                                                                 | -                                                                |  |  |
| 11  | Water side heat exchanger anti-freezing temperature1 (sensor Taf1)       | Actual value = value displayed                                   |  |  |
| 12  | Water side heat exchanger anti-freezing temperature2 (sensor Taf2)       | Actual value = value displayed                                   |  |  |
| 13  | Total water outlet temperature(Tw)                                       | Actual value = value displayed                                   |  |  |
| 14  | Water inlet temperature(Twi, displays to decimal places)                 | Actual value = value displayed                                   |  |  |
| 15  | Water outlet temperature(Two)                                            | Actual value = value displayed                                   |  |  |
| 16  | Air side heat exchanger refrigerant total outlet temperature (Tz/7)      | Actual value = value displayed                                   |  |  |
| 10  | Reserved                                                                 |                                                                  |  |  |
| 18  | Compressor discharge temperature 1 (sensor Tp1)                          | Actual value = value displayed                                   |  |  |
| 19  | Compressor discharge temperature 2 (sensor Tp2)                          | Actual value = value displayed                                   |  |  |
| 20  | Compressor module temperature 2 (sensor 1)2)                             | Actual value = value displayed                                   |  |  |
| 20  | Compressor module temperature(TF2)                                       | Actual value = value displayed<br>Actual value = value displayed |  |  |
|     | Air discharge superheat degree                                           |                                                                  |  |  |
| 22  |                                                                          | Actual value = value displayed                                   |  |  |
| 23  | Power supply phase B current                                             | Actual value = value displayed                                   |  |  |
| 24  | Power supply phase C current                                             | Actual value = value displayed                                   |  |  |
| 25  | Reserved                                                                 | -                                                                |  |  |
| 26  | EXV 1 position                                                           | Steps=value displayed*4                                          |  |  |
| 27  | Reserved                                                                 | -                                                                |  |  |
| 28  | Compressor discharge pressure(in heating mode)                           | Actual value = value displayed                                   |  |  |
| 29  | Compressor suction pressure (displays to decimal places in cooling mode) | Actual value = value displayed                                   |  |  |
| 30  | Air suction superheat degree                                             | Actual value = value displayed                                   |  |  |
| 31  | Air suction temperature (Th)                                             | Actual value = value displayed                                   |  |  |
| 32  | Silent selection                                                         | Refer to Note2                                                   |  |  |
| 33  | Static pressure selection                                                | 0                                                                |  |  |
| 34  | Reserved                                                                 | -                                                                |  |  |
| 35  | Reserved                                                                 | -                                                                |  |  |
| 36  | Most recent error or protection code                                     | "" is displayed if no error or protection events                 |  |  |
|     | ··· ·· · · · · · ·                                                       | have occurred since start-up                                     |  |  |
|     |                                                                          | 0: no limits;                                                    |  |  |
|     |                                                                          | 1: ambient temperature(T4) limit frequency;                      |  |  |
|     |                                                                          | 2: voltage limit frequency;                                      |  |  |
| 37  | Limit frequency number                                                   | 3: air discharge limit frequency;                                |  |  |
|     |                                                                          | 4: low voltage ratio;                                            |  |  |
|     |                                                                          | 5: instant limit frequency;                                      |  |  |
|     |                                                                          | 6: current limit frequency;                                      |  |  |
|     |                                                                          | 7: voltage limit frequency;                                      |  |  |

| Aqua Tempo Super II |                            |                                               |  |  |
|---------------------|----------------------------|-----------------------------------------------|--|--|
|                     |                            | 8: pressure ratio and capacity demand         |  |  |
|                     |                            | adjusting;                                    |  |  |
|                     |                            | 9: cooling low pressure limit frequency)      |  |  |
|                     |                            | The first digit: T4 selection solution;       |  |  |
| 38                  | Defrosting process status  | The second digit: scheme's range;             |  |  |
|                     |                            | The third and fourth digits : defrosting time |  |  |
| 39                  | EEPROM mismatch indicator: | 1 : failure;                                  |  |  |
| 35                  |                            | 0 : no failure                                |  |  |
| 40                  | Defrosting scheme          | Actual value = value displayed                |  |  |
| 41                  | Initial frequency          | Actual value = value displayed                |  |  |
| 42                  | Tc(+30)/Te(+25)            | Actual value = value displayed                |  |  |
| 43                  | Online units statistic     | Actual value = value displayed                |  |  |
| 44                  | Program version            | Actual value = value displayed                |  |  |
| 45                  |                            | -                                             |  |  |

Notes:

1. The fan speed index is related to the fan speed in rpm as described in Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

2. Silent mode:

• 0: night silent mode; 1: silent mode; 2: super silent mode; 3: no silent mode.



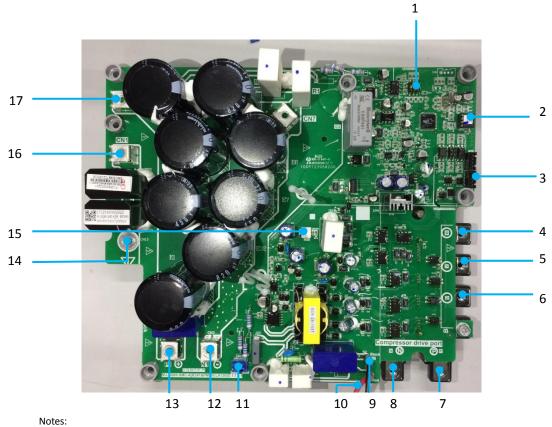

## 2.2.4 Digital display output

Table 4-2.5: Digital display output in different operating states

| Outdoor unit state  |                             | Parameters displayed on DSP1                          | Parameters displayed on DSP2                          | DSP1 |
|---------------------|-----------------------------|-------------------------------------------------------|-------------------------------------------------------|------|
| Standby             |                             | 0                                                     | 1                                                     |      |
| Normal              | For single compressor units | None                                                  | Running speed of compressor                           |      |
| operation           | For dual compressor units   | Running speed of compressor A in rotations per second | Running speed of compressor B in rotations per second |      |
| Error or protection |                             | or placeholder                                        | Error or protection code                              |      |
| System check        |                             | Refer to Table 4-2.4                                  | Refer to Table 4-2.4                                  | DSP2 |

## 2.3 Compressor Inverter Module Board

Figure 4-2.2: Compressor inverter module PCB



1. Label descriptions are given in Table 4-2.6.

Midea

Table 4-2.6: Compressor inverter module PCB

| Label in |      |                                            |                             |
|----------|------|--------------------------------------------|-----------------------------|
| Figure   | Code | Content                                    | Voltage                     |
| 4-2.2    |      |                                            | _                           |
| 1        | SW1  | Inverter module address switch             | -                           |
| 2        | IC14 | EEPROM                                     | -                           |
| 2        | CN9  | Low show we shall a second section and     | 2.5-2.7V DC                 |
| 3        | CN10 | Inverter module communication port         |                             |
| 4        | w    |                                            | $V_{UV} = V_{Uw} = V_{VW}$  |
| 5        | v    | Compressor connections                     | 0-380V AC                   |
| 6        | U    |                                            |                             |
| 7        | N    | IPM module input port N                    | V <sub>PN</sub> = 540V DC   |
| 8        | Р    | IPM module input port P                    |                             |
| 9        | N2   | IPM module protection port N2              | V <sub>P2N2</sub> = 540V DC |
| 10       | P2   | IPM module protection port P2              |                             |
| 11       | CN15 | Power supply inverter module board         | 310V DC                     |
| 12       | N1   | IPM module power supply port N1            | V <sub>P1N1</sub> =540V DC  |
| 13       | P1   | IPM module power supply port P1            |                             |
| 14       | CN3  | Three-phase bridge rectifier positive port | 540V DC relative            |
| 14       | CNS  |                                            | to N                        |
| 15       | CN11 | Three-phase bridge rectifier control port  | 15V DC                      |
| 16       | CN1  | Reactor port                               | 540V DC relative            |
| 10       | CIVI |                                            | to N                        |
| 17       | CN4  | Capacity positive port                     | 540V DC relative            |
| 17       | 014  |                                            | to N                        |

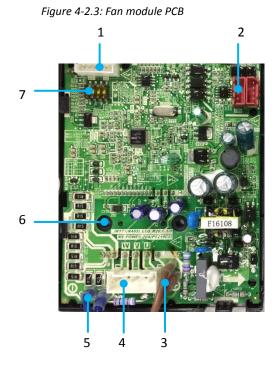

## 2.3.1 Compressor Inverter Module PCB field setting

Table 4-2.7: Compressor inverter module PCB switch settings

| Switch      | Description                                                    |
|-------------|----------------------------------------------------------------|
| SW1         | 000: MC-SU30-RN1L compressor inverter module address setting   |
|             | 000: MC-SU60-RN1L compressor A inverter module address setting |
| OFF [= = =] | 001: MC-SU60-RN1L compressor B inverter module address setting |



## 2.4 Fan Module Board



#### Table 4-2.8: Fan module PCB

| Label in<br>Figure<br>4-2.3 | Code       | Content                                | Voltage                                                          |
|-----------------------------|------------|----------------------------------------|------------------------------------------------------------------|
| 1                           | CN2        | EEPROGRAM                              | -                                                                |
| 2                           | CN1<br>CN4 | Communication port for inverter module | 2.5-2.7 DC                                                       |
| 3                           | Р          | Power supply for inverter module       | V <sub>PN</sub> = 310V DC                                        |
| 4                           | CN3        | Power supply for the fan motor         | V <sub>UV</sub> = V <sub>Uw</sub> = V <sub>VW</sub><br>0-310V AC |
| 5                           | N          | Power supply for inverter module       | V <sub>PN</sub> = 310V DC                                        |
| 6                           | U3         | IPM                                    | -                                                                |
| 7                           | SW1        | Address for the inverter module        | -                                                                |

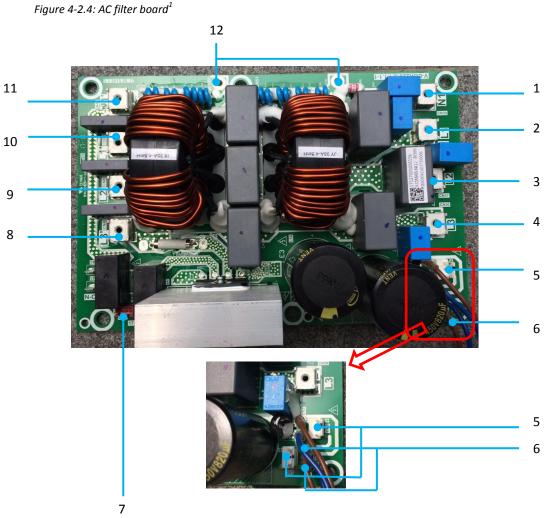

#### 2.4.1 Fan Module PCB field setting

Table 4-2.9: Fan module PCB switch settings

| Switch                                                                                                                 |       | Description                                   |
|------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------|
| SW1                                                                                                                    |       | 00: MC-SU30-RN1L fan module address setting   |
| ON         1         2         3         4         SW1-1           ON         0         FF         SW1-3         SW1-3 |       | 00: MC-SU60-RN1L fan module A address setting |
|                                                                                                                        |       | 01: MC-SU60-RN1L fan module B address setting |
|                                                                                                                        | SW1-3 | Reserved                                      |
|                                                                                                                        | SW1-4 |                                               |



## 2.5 AC Filter Board



Notes:

1. Label descriptions are given in Table 4-2.10.



Table 4-2.10: MHC-V10(12, 14, 16)W/D2N1 outdoor unit main PCB for

refrigerant system

| rejngeran |           |                                             |                                                                     |  |
|-----------|-----------|---------------------------------------------|---------------------------------------------------------------------|--|
| Label in  |           |                                             |                                                                     |  |
| Figure    | Code      | Content                                     | Voltage                                                             |  |
| 4-2.4     |           |                                             |                                                                     |  |
| 1         | CN39      | N1                                          |                                                                     |  |
| V         | CN38      | L1                                          |                                                                     |  |
| 3         | CN37      | L2                                          | $V_{L1N1} = V_{L2N1} = V_{L3N1} = 220V$                             |  |
| 4         | 4 CN36 L3 |                                             |                                                                     |  |
|           | CN1       |                                             | 310V DC                                                             |  |
| 5         | CN2       | Power supply for compressor inverter module |                                                                     |  |
| 6         | CN3       | Device events for for invertor module       | 310V DC                                                             |  |
| 0         | CN4       | Power supply for fan inverter module        |                                                                     |  |
| 7         | CN6       | AC filter board communication port          | 12 DC                                                               |  |
| 8         | CN40      | L3′                                         |                                                                     |  |
| 9         | CN41      | L2'                                         | V <sub>L1'N1'</sub> =V <sub>L2'N1'</sub> =V <sub>L3'N1'</sub> =220V |  |
| 10        | CN42      | L1'                                         |                                                                     |  |
| 11        | CN43      | N1′                                         |                                                                     |  |
| 12        | GND       | GND                                         | -                                                                   |  |

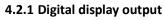
# 3 Error Code Table

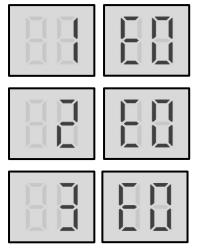
| Error<br>code | Content                                                                             | Remarks                                  |
|---------------|-------------------------------------------------------------------------------------|------------------------------------------|
| 1E0           | Main PCB EEPROM mismatch                                                            | Displayed on main PCB and user interface |
| 2E0           | Inverter module A EEPROM mismatch                                                   | Displayed on main PCB and user interface |
| 3E0           | Inverter module B EEPROM mismatch                                                   | Displayed on main PCB and user interface |
| E1            | Power phase sequence error                                                          | Displayed on main PCB and user interface |
| E2            | Communication error between main PCB and wired controller                           | Displayed on main PCB and user interface |
| E3            | Total water outlet temperature sensor (Tw) error<br>(displayed on master unit only) | Displayed on main PCB and user interface |
| E4            | Outlet water temperature sensor (Two) error                                         | Displayed on main PCB and user interface |
| E5            | Air-side heat exchanger temperature sensor (T3) error                               | Displayed on main PCB and user interface |
| E7            | Outdoor ambient temperature sensor (T4) error                                       | Displayed on main PCB and user interface |
| E9            | Water flow failure                                                                  | Displayed on main PCB and user interface |
| 1Eb           | Water-side heat exchanger anti-freezing temperature sensor1 (Taf1) error            | Displayed on main PCB and user interface |
| 1Eb           | Water-side heat exchanger anti-freezing temperature sensor2 (Taf2) error            | Displayed on main PCB and user interface |
| EC            | Number of units detected by wired controller has decreased                          | Displayed on main PCB and user interface |
| 1Ed           | Compressor discharge temperature sensor1 (Tp1) error                                | Displayed on main PCB and user interface |
| 2Ed           | Compressor discharge temperature sensor2 (Tp2) error                                | Displayed on main PCB and user interface |
| EF            | Inlet water temperature sensor (Twi) error                                          | Displayed on main PCB and user interface |
| EH            | System self-check error                                                             | Displayed on main PCB and user interface |
| EP            | Compressor discharge temperature sensor error                                       | Displayed on main PCB and user interface |
| EU            | Total cooling outlet temperature sensor (Tz/7) error                                | Displayed on main PCB and user interface |
| P0            | Compressor discharge temperature protection                                         | Displayed on main PCB and user interface |
| P1            | Compressor suction temperature protection                                           | Displayed on main PCB and user interface |
| P4            | Power supply phase B Current protection                                             | Displayed on main PCB and user interface |
| P5            | Power supply phase C Current protection                                             | Displayed on main PCB and user interface |
| 1P6           | System A inverter module protection                                                 | Displayed on main PCB and user interface |
| 2P6           | System A inverter module protection                                                 | Displayed on main PCB and user interface |
| P7            | Condenser tube and Total cooling outlet high temperature protection                 | Displayed on main PCB and user interface |
| Р9            | Water-side heat exchanger inlet/outlet temperature<br>difference protection         | Displayed on main PCB and user interface |
| PA            | Inlet water high temperature in cooling mode                                        | Displayed on main PCB and user interface |
| Pb            | System anti-freezing protection                                                     | Displayed on main PCB and user interface |
| PC            | Evaporator pressure low in cooling mode                                             | Displayed on main PCB and user interface |
| PE            | Low-temperature protection of evaporator (manual recovery)                          | Displayed on main PCB and user interface |
| PL            | Module high temperature protection                                                  | Displayed on main PCB and user interface |
|               |                                                                                     | Displayed on main PCB and user interface |
| 1PU           | DC fan 1 module protection                                                          | Displayed on main FCB and user interface |

| Aqua | i Tempo Super II                                                           |                                          |
|------|----------------------------------------------------------------------------|------------------------------------------|
| 1H0  | System A IPM module Communication error                                    | Displayed on main PCB and user interface |
| 2H0  | System B IPM module Communication error                                    | Displayed on main PCB and user interface |
| H1   | Under/Over voltage protection                                              | Displayed on main PCB and user interface |
| 1H6  | System 1 DC bus voltage error                                              | Displayed on main PCB and user interface |
| 2H6  | System 2 DC bus voltage error                                              | Displayed on main PCB and user interface |
| Fb   | Pressure sensor error                                                      | Displayed on main PCB and user interface |
| Fd   | Air suction temperature(Th) protection error                               | Displayed on main PCB and user interface |
| 1FF  | DC fan 1 error                                                             | Displayed on main PCB and user interface |
| 2FF  | DC fan 2 error                                                             | Displayed on main PCB and user interface |
| FP   | DIP inconsistency of multiple water pumps(Power failure recovery required) | Displayed on main PCB and user interface |
| LO   | Inverter module protection                                                 | -                                        |
| L1   | DC bus low voltage protection                                              | -                                        |
| L2   | DC bus high voltage protection                                             | -                                        |
| L4   | MCE error                                                                  | -                                        |
| L5   | Zero speed protection                                                      | -                                        |
| L7   | Phase sequence error                                                       | -                                        |
| L8   | Compressor frequency variation greater than 15Hz                           | _                                        |
| Lõ   | within one second protection                                               | -                                        |
| L9   | Actual compressor frequency differs from target                            | _                                        |
| LJ   | frequency by more than 15Hz protection                                     |                                          |
| dF   | Defrosting indicator                                                       | Displayed on main PCB and user interface |

Midea

# 4 Troubleshooting


## 4.1 Warning


## Warning

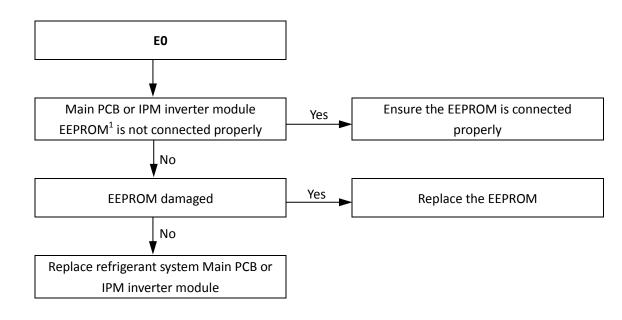


- All electrical work must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation (all national, local and other laws, standards, codes, rules, regulations and other legislation that apply in a given situation).
- Power-off the outdoor units before connecting or disconnecting any connections or wiring, otherwise electric shock (which can cause physical injury or death) may occur or damage to components may occur.

# 4.2 E0 Troubleshooting





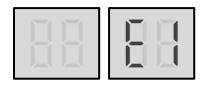

## 4.2.2 Description

- 1E0 indicates main PCB EEPROM error.
- 2E0 indicates IPM inverter module (compressor A) EEPROM error.
- 3E0 indicates IPM inverter module (compressor B) EEPROM error.
- All units stop running.
- Error code is displayed on main PCB and user interface.

## 4.2.3 Possible causes

- Main PCB or IPM inverter module EEPROM is not connected properly.
- Main PCB or IPM inverter module damaged.
- EEPROM damaged.

## 4.2.4 Procedure




Notes:

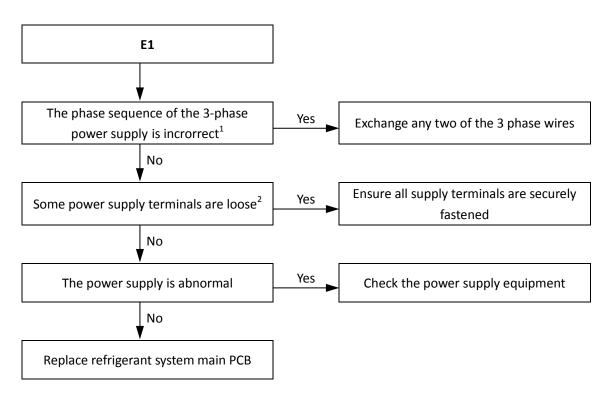
- 1. Main PCB EEPROM is designated IC10 on the main PCBs (labeled 32 in Figure 4-2.1 in Part 4, 2.2 "Main PCB").
- Compressor inverter module PCB EEPROM is designated IC14 on compressor inverter module PCB (labeled 2 in Figure 4-2.2 in Part 4, 2.3 "Compressor inverter module PCB").

Midea





#### 4.3.2 Description


- Phase sequence error.
- Unit stops running.
- Error code is displayed on main PCB and user interface.

#### 4.3.3 Possible causes

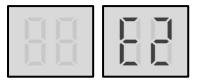
- Power supply phases not connected in correct sequence.
- Power supply terminals loose.
- Power supply abnormal.
- Main PCB damaged.



#### 4.3.4 Procedure



#### Notes:


- The A, B, C terminals of 3-phase power supply should match compressor phase sequence requirements. If the phase sequence is inverted, the compressor will operate inversely. If the wiring connection of each outdoor unit is in A, B, C phase sequence, and multiple units are connected, the current difference between C phase and A, B phases will be very large as the power supply load of each outdoor unit will be on C phase. This can easily lead to tripped circuits and terminal wiring burnout. Therefore if multiple units are to be used, the phase sequence should be staggered, so that the current is distributed among the three phases equally.
- 2. Loose power supply terminals can cause the compressors to operate abnormally and compressor current to be very large.



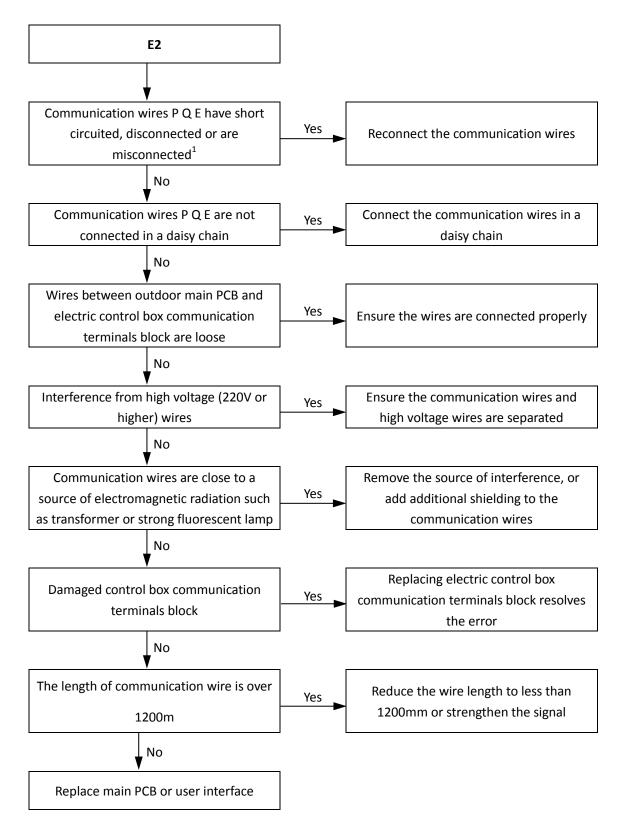
# 4.4 E2 Troubleshooting

Midea

## 4.4.1 Digital display output



#### 4.4.2 Description

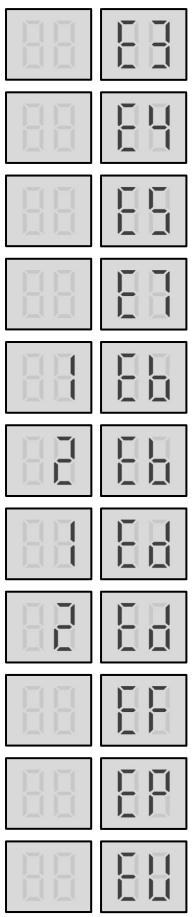

- Communication error between outdoor unit and user interface.
- All units stop running.
- Error code is displayed on main PCB and user interface.

#### 4.4.3 Possible causes

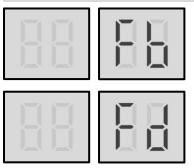
- Communication wires between outdoor unit and user interface not connected properly.
- Communication wiring P Q E terminals misconnected.
- Loosened wiring within electric control box.
- Interference from high voltage wires or other sources of electromagnetic radiation.
- Communication wire too long.
- Damaged main PCB, user interface or electric control box communication terminals block.



#### 4.4.4 Procedure




Notes:


1. Measure the resistance among P, Q and E. The normal resistance between P and Q is 120Ω, between P and E is infinite, between Q and E is infinite. Communication wiring has polarity. Ensure that the P wire is connected to P terminals and the Q wire is connected to Q terminals.

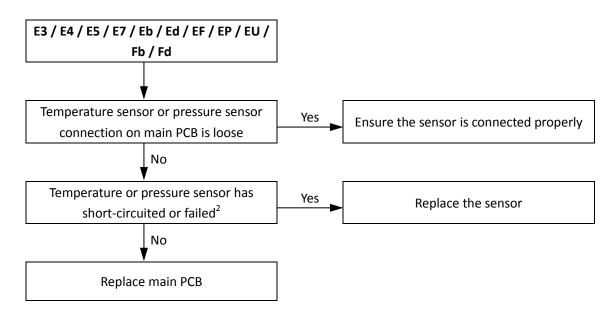


## 4.5.1 Digital display output



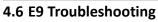





#### 4.5.2 Description

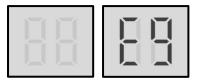
- E3 indicates a combined water outlet temperature sensor error.
- E4 indicates a water outlet temperature sensor error.
- E5 indicates an air side heat exchanger refrigerant outlet temperature sensor error.
- E7 indicates an outdoor ambient temperature sensor error.
- 1Eb indicates a water side heat exchanger anti-freezing temperature sensor 1 error.
- 2Eb indicates a water side heat exchanger anti-freezing temperature sensor 2error.
- 1Ed indicates a discharge pipe temperature sensor 1 error.
- 2Ed indicates a discharge pipe temperature sensor 2 error.
- EF indicates a water inlet temperature sensor error.
- EP indicates a discharge pipe temperature sensor failure alarm.
- EU indicates an air side heat exchanger refrigerant total outlet temperature sensor error.
- Fb indicates a pressure sensor error.
- Fd indicates an air suction temperature sensor error.
- All stop running.
- Error code is displayed on main PCB and user interface.

#### 4.5.3 Possible causes


- Temperature sensor or pressure sensor not connected properly or has malfunctioned.
- Damaged main PCB.

# 4.5.4 Procedure




Notes:

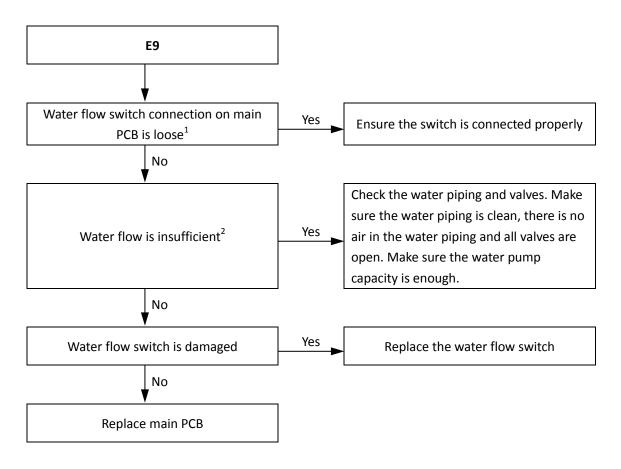
- 1. All the sensors are connected to port CN24, CN69, CN31 and CN40 on the main PCB (labeled 22, 23, 24, 25 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 or 4-5.2 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".





## 4.6.1 Digital display output




#### 4.6.2 Description

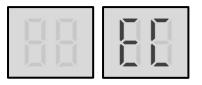
- Water flow failure.
- E9 indicates a water flow switch error. When an E9 error occurs 3 times in 60 minutes, a manual system restart is required before the system can resume operation.
- All units stop running.
- Error code is displayed on main PCB and user interface.

#### 4.6.3 Possible causes

- The wire circuit is short connected or open.
- Water flow rate is too low.
- Water flow switch damaged.
- Damaged main PCB.

# 4.6.4 Procedure




#### Note:

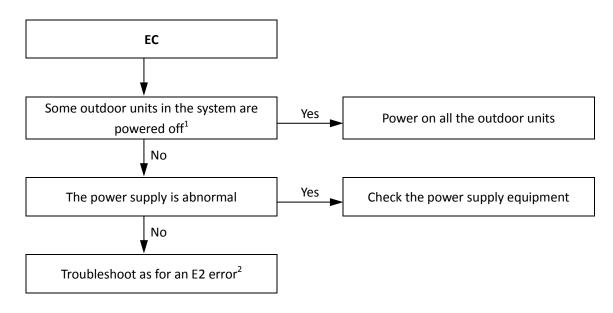
1. Water flow switch connection is port CN44 on the main PCB (labeled 31 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").



## 4.7 EC Troubleshooting

4.7.1 Digital display output




#### 4.7.2 Description

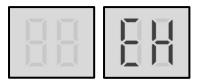
- EC indicates that the number of slave units detected by master unit has decreased.
- All units stop running.
- Error code is only displayed on the user interface.

#### 4.7.3 Possible causes

- Some outdoor units are powered off.
- Power supply abnormal.
- Incorrect outdoor unit address setting.
- Communication wires between outdoor units not connected properly.
- Loosened wiring within electric control box.
- Damaged main PCB or electric control box communication terminals block.

# 4.7.4 Procedure




Notes:

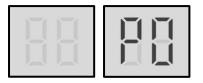
- 1. Check digital display on the main PCB. If digital display is on, the main PCB is powered on, if digital display is off, the main PCB is powered off. Refer to Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB".
- 2. See Part 4, 4.4 "E2 Troubleshooting".

# Aqua Tempo Super II 4.8 EH Troubleshooting



## 4.8.1 Digital display output




#### 4.8.2 Description

• EH indicates system self-check in the factory, it will not display in the normal operating.

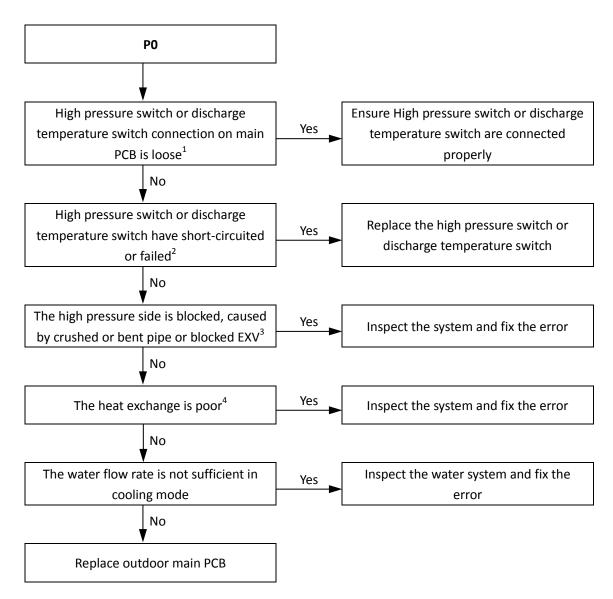




## 4.9.1 Digital display output



#### 4.9.2 Description


- Discharge pipe high pressure or discharge temperature switch protection. When the discharge pressure rises above 4.4MPa or discharge temperature rises above 115°C, the system displays P0 protection and all units stop running. When the discharge pressure falls below 3.2MPa or discharge temperature fall below 75°C, P0 is removed and normal operation resumes. When P0 error occurs 5 times in 120 minutes, a manual system restart is required before the system can resume operation.
- Error code is displayed on main PCB and user interface.

#### 4.9.3 Possible causes

- High pressure switch or discharge temperature switch not connected properly or has malfunctioned.
- Excess refrigerant.
- System contains air or nitrogen.
- High pressure side blockage.
- Poor condenser heat exchange.
- Main PCB damaged.



#### 4.9.4 Procedure



Notes:

- 1. High pressure switch connection is port CN47 on the main PCB (labeled 29 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").
- 2. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 3. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 4. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.

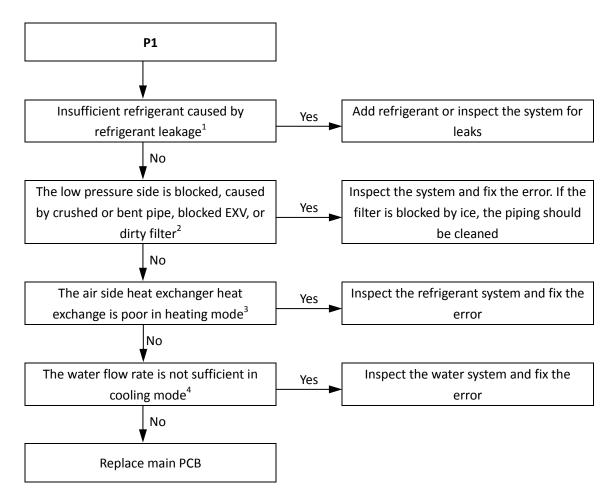


4.10 P1 Troubleshooting

# 4.10.1 Digital display output



#### 4.10.2 Description


- P1 indicates suction pipe low pressure protection. When the suction pressure falls below 0.05MPa, the system displays P1 protection and all units stop running. When the pressure rises above 0.15MPa, P1 is removed and normal operation resumes. When P1 error occurs 5 times in 120 minutes, a manual system restart is required before the system can resume operation.
- Error code is displayed on main PCB and user interface.

## 4.10.3 Possible causes

- Low pressure switch not connected properly or has malfunctioned.
- Insufficient refrigerant.
- Low pressure side blockage.
- Poor evaporator heat exchange in heating mode.
- Insufficient water flow in cooling mode.
- Main PCB damaged.



## 4.10.4 Procedure



Notes:

- 1. To check for insufficient refrigerant:
  - An insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than
    normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once
    sufficient refrigerant has been charged into the system.
- 2. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 3. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 4. Check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

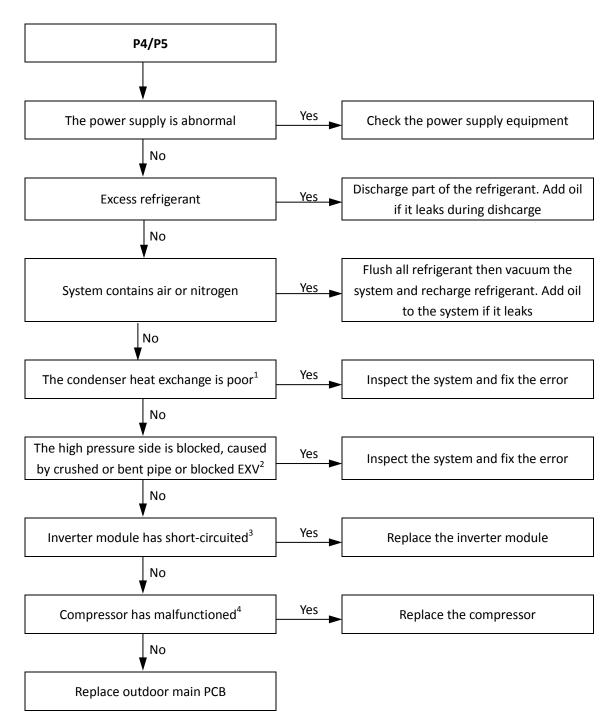


# 4.11 P4, P5 Troubleshooting

## 4.11.1 Digital display output



#### 4.11.2 Description


- P4 indicates current protection on Phase B.
- P5 indicates current protection on Phase C.
- When the compressor current rises above the protection value 25A, the system displays P3 or P4 protection and all units stop running. When the current returns to the normal range, P3 or P4 is removed and normal operation resumes. When P3 or P4 error occurs 5 times in 120 minutes, a manual system restart is required before the system can resume operation.
- Error code is displayed on main PCB and user interface.

#### 4.11.3 Possible causes

- Power supply abnormal.
- Poor condenser heat exchange.
- High pressure side blockage.
- Excess refrigerant.
- System contains air or nitrogen.
- Inverter module damaged.
- Compressor damaged.
- Main PCB damaged.



#### 4.11.4 Procedure



Notes:

- 1. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 2. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 3. Set a multi-meter to buzzer mode and test any two terminals of P N and U V W of the inverter module. If the buzzer sounds, the inverter module has short-circuited.
- 4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.



# 4.12.1 Digital display output



#### 4.12.2 Description

- 1P6 indicates compressor A inverter module protection.
- 2P6 indicates compressor B inverter module protection.
- When a P6 error occurs, a manual system restart is required before the system can resume operation. The cause of a P6 error should be addressed promptly in order to avoid system damage.
- All units stop running.
- Error code is displayed on the main PCB and user interface.

#### 4.12.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection.
- Phase sequence error.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.

## 4.12.4 Specific error codes for xH4 inverter module protection

If a P6 error code is displayed, press button SW3 (to No.36 item) until one of the following specific error codes is displayed on the digital display: xL0, xL1, xL2, xL4, xL5, xL7, xL8, xL9. Refer to Figure 5-4.3 and Table 5-4.1.

#### Figure 4-4.1: Button SW3 on main PCB

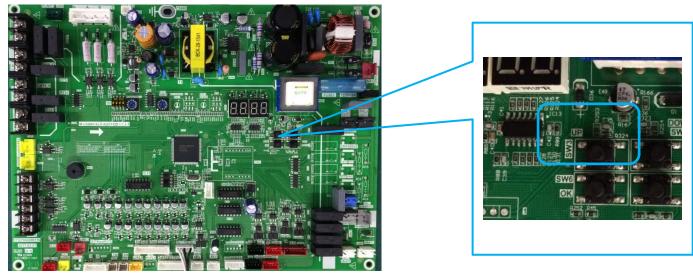
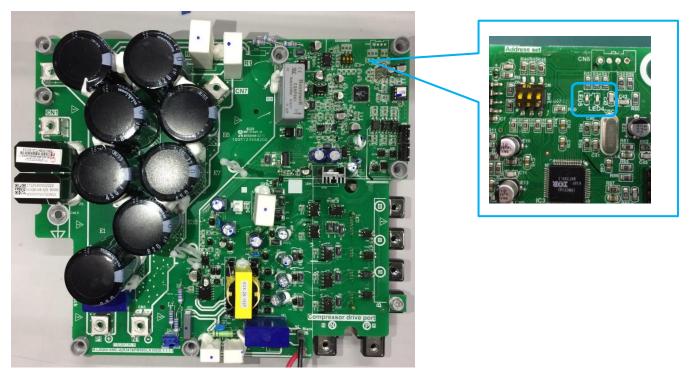





Table 4-4.1: Specific error codes for error xH4

| Content                                                                                |  |
|----------------------------------------------------------------------------------------|--|
| Inverter module protection                                                             |  |
| DC bus low voltage protection                                                          |  |
| DC bus high voltage protection                                                         |  |
| MCE error                                                                              |  |
| Zero speed protection                                                                  |  |
| Phase sequence error                                                                   |  |
| Compressor frequency variation greater than 15Hz within one second protection          |  |
| Actual compressor frequency differs from target frequency by more than 15Hz protection |  |
|                                                                                        |  |


Notes:

1. 'x' is a placeholder for the compressor system (compressor and related electrical components), with 1 representing compressor system A and 2 representing compressor system B.

#### The specific error codes xL0, xL1, xL2 and xL4 cjcled5

n also be obtained from the inverter module LED indicators. If an inverter module error has occurred, LED5 is continuously on and LED4 flashes. Refer to Figure 5-4.4 and Table 5-4.2.

Figure 4-4.2: LED indicators LED4 and LED5 on main PCB



| Tabla | F 1 2. | Freese | indicated | ~ ~ | 1504 | 10 |
|-------|--------|--------|-----------|-----|------|----|
| Tuble | 5-4.2: | ETTOIS | indicated | υn  | LED4 | /0 |


| LED4/6 flashing pattern                               | Corresponding error                  |
|-------------------------------------------------------|--------------------------------------|
| Flashes 8 times and stops for 1 second, then repeats  | xL0 - Inverter module protection     |
| Flashes 9 times and stops for 1 second, then repeats  | xL1 - DC bus low voltage protection  |
| Flashes 10 times and stops for 1 second, then repeats | xL2 - DC bus high voltage protection |
| Flashes 12 times and stops for 1 second, then repeats | xL4 - MCE error                      |

## 4.12.5 First troubleshooting step

**λide**a

To troubleshoot XP6 errors, first ensure that the DC bus wire is connected correctly. The DC bus wire should run from the N terminal on the inverter module, through the current sensor (in the direction indicated by the arrow on the current sensor), and end at the N terminal on the DC filter board.

Figure 4-4.3: DC detection wire connection method



#### 4.12.6 xL0 troubleshooting

#### Step 1: Check compressor

- Check that compressor wiring is all connected properly.
- The normal resistances of the inverter compressor are  $0.7-1.5\Omega$  among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

Figure 4-4.4: Measuring resistances among compressor terminals





If the resistances are normal, go to Step 2.

Figure 4-4.5: Measuring resistances between compressor terminals and ground







## Step 2: Check inverter module

- The DC voltage between terminals P1 and N1 should be 1.41 times the local power supply voltage. The DC voltage between terminals P and N should be 510-580V. If either voltage is not in the normal range, troubleshoot as for xL1 or xL2 errors. Refer to Part 4, 4.12.7 "xL1/xL4 troubleshooting" or Part 4, 4.12.8 "xL2 troubleshooting".
- Disconnect the terminals U, N, W from the inverter compressor. Measure the resistance among terminals P, N, U, V, W. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced.

201709



Figure 4-4.6: Inverter module terminals



### 4.12.7 xL1/xL4 troubleshooting

### Step 1: Check inverter module

Check the DC voltage between terminals P and N. The normal value is 510-580V. If the voltage is lower than 510V, go to Step 2.

Figure 4-4.7: Inverter module terminals



### Step 2: Check rectifier wiring circuit

If the wires are loose, fasten the wires. If the wires are OK, replace the main PCB.

Figure 4-4.8: Rectifier and AC filter board in electric control box

Check AC filter board wiring

Check 3-phase bridge rectifier wiring



Midea Aqua Tempo Super II Service Manual



### 4.12.8 xL2 troubleshooting

lidea

### Step 1: Check inverter module

Check the DC voltage between terminals P and N. The normal value is 510-580V, if the voltage is higher than 580V, go to Step 2.

Figure 4-4.9: Inverter module terminals

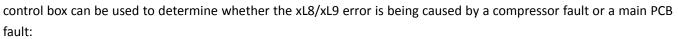


### Step 2: Check inverter module

Check the voltage between terminals P and N on the capacitor board. The normal value is 510-580V. If the voltage is
not in the normal range, there is a problem with the electrolytic capacitor power supply. Check the power supply for
high or unstable voltage. If the power supply voltage value is normal, then the main PCB has malfunctioned and
needs to be replaced.

Figure 4-4.10: Inverter module terminals




### 4.12.9 xL8/xL9 troubleshooting

### Step 1: Check compressor

- The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.
- Refer to Figures 4-4.4 and 4-4.5 in Part 4, 4.12.6 "xL0 troubleshooting". If the resistance values are normal, go to Step 2.

### Step 2: Check compressor and main PCB

• If there is another unit nearby (either in the same system or another system) that is operating normally, its electric



- If using another unit in the same system as the unit with the error to perform the test, set it as the master unit (address 0); if using a unit in another system, use the master unit.
- Disconnect the power wires of the compressor referenced in the xL8/xL9 error code.
- In the unit that is operating normally, disconnect the power wires that connect a compressor to the electric control box and use them to connect the compressor with the xL8/xL9 error to the electric control box of the unit that is operating normally. Ensure that the U, V, W terminals are connected in the right order, and then start the system that is operating normally.
- If the compressor with the xL8/xL9 error runs normally, replace the main PCB of the unit with the xL8/xL9 error and ensure the wiring is correct; if the compressor with the xL8/xL9 error still does not run normally, it needs to be replaced. Refer to Part 4, 4.12.10 "Compressor replacement procedure".

Figure 4-4.11: Connecting compressor to an error-free unit



Unit operating normally



- If there is no error-free unit nearby:
  - Replace the main PCB of the unit with the xL8/xL9 error and ensure the wiring is correct. If the compressor with the xL8/xL9 error runs normally, a fault with the main PCB was causing the xL8/xL9 error; if the compressor with the xL8/xL9 error still does not run normally, it needs to be replaced. Refer to Part 4, 4.12.10 "Compressor replacement procedure".

### 4.12.10 Compressor replacement procedure

### Step 1: Remove faulty compressor and remove oil

- Remove the faulty compressor from the outdoor unit.
- Before removing the oil, shake the compressor so as to not allow impurities to remain settled at the bottom.
- Drain the oil out of the compressor and retain it for inspection. Normally the oil can be drained out from the compressor discharge pipe. Refer to Figure 4-4.12.

### Step 2: Inspect oil from faulty compressor

The oil should be clear and transparent. Slightly yellow oil is not an indication of any problems. However, if the oil is dark, black or contains impurities, the system has problems and the oil needs to be changed. Refer to Figure 5-4.16 for further details regarding inspecting compressor oil. (If the compressor oil has been spoiled, the compressor will not be being lubricated effectively. The scroll plate, crankshaft and bearings will wear. Abrasion will lead to a larger load and higher current. More electric energy will get dissipated as heat and the temperature of the motor will become increasingly high. Finally, compressor damage or burnout will result. Refer to Figure 4-4.13.)

Figure 4-4.12: Draining oil from a compressor



74

## 

### Aqua Tempo Super II

- If the oil drained from the faulty compressor is clean, go to Step 6.
- If the oil drained from the faulty compressor is only lightly spoiled, go to Step 4.
- If the oil drained from the faulty compressor is heavily spoiled, check the oil in the other compressors in the system.
   Drain the oil from any compressors where the oil has been spoiled. Go to Step 4.

### Step 4: Replace oil separator(s) and accumulator(s)

• If the oil from a compressor is spoiled (lightly or heavily), drain the oil from the oil separator and accumulator in that unit and then replace them.

### Step 5: Check filters(s)

If the oil from a compressor is spoiled (lightly or heavily), check the filter between the gas stop valve and the 4-way valve in that unit. If it is blocked, clean with nitrogen or replace.

### Step 6: Replace the faulty compressor and re-fit the other compressors

- Replace the faulty compressor.
- If the oil had been spoiled and was drained from the non-faulty compressors in Step 3, use clean oil to clean them before re-fitting them into the units. To clean, add oil into the compressor through the discharge pipe using a funnel, shake the compressor, and then drain the oil. Repeat several times and then re-fit the compressors into the units.

### Step 7: Add compressor oil

- Add 2L of oil to the new compressor through the discharge pipe, using a funnel.
- Add 2L of oil to each of the compressors from which oil was drained in Step 3.
- Only use FV68H oil. Different compressors require different types of oil. Using the wrong type of oil leads to various problems.
- Add additional oil to the accumulators such that the total amount of oil is 4.6L.

### Step 8: Vacuum drying and refrigerant charging

 Once all the compressors and other components have been fully connected, vacuum dry the system and recharge refrigerant.

#### Figure 4-4.13: Inspecting compressor oil

This oil is black - it has been carbonized

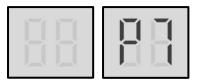


This oil is a little yellow, but is clear and transparent and the condition is acceptable



This oil is still transparent but there are impurities which may clog the filter




Cloudy or gray oil indicates abnormal system operation



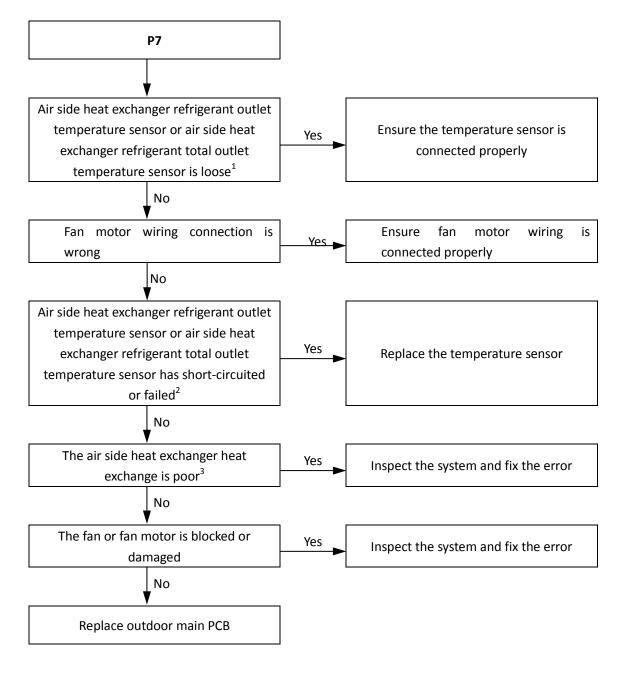


This oil contains particles of copper





### 4.13.2 Description


- High temperature protection of air side heat exchanger refrigerant outlet temperature sensor or air side heat exchanger refrigerant total outlet temperature sensor in cooling mode. When the air side heat exchanger refrigerant outlet temperature is higher than 65°C or air side heat exchanger refrigerant total outlet temperature is higher than 62°C for more than 3 seconds, the system displays P7 protection and all units stop running. When the air side heat exchanger refrigerant outlet temperature returns drops below 52°C, P7 is removed and normal operation resumes.
- All units stop running.
- Error code is displayed on main PCB and user interface.

### 4.13.3 Possible causes

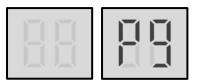
- Air side heat exchanger refrigerant outlet temperature sensor or air side heat exchanger refrigerant total outlet temperature sensor not connected properly or has malfunctioned.
- Fan motor wiring connection is wrong.
- Poor condenser heat exchange.
- Fan motor damaged.
- Main PCB damaged.



### 4.13.4 Procedure



Notes:


Air side heat exchanger refrigerant outlet temperature sensor and air side heat exchanger refrigerant total outlet temperature sensor connection port is CN24 and CN69 on the main PCB (labeled 22 and 23 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").

Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

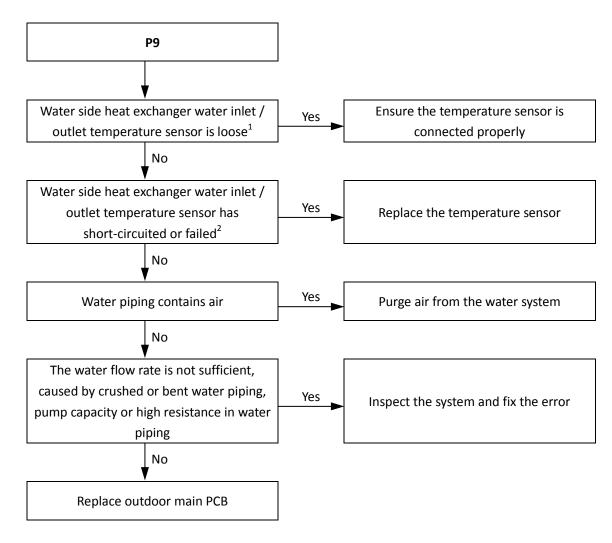
Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.



4.14.1 Digital display output



### 4.14.2 Description


- High temperature difference between water side heat exchanger water inlet and water outlet temperatures protection.
- All units stop running.
- Error code is displayed on main PCB and user interface.

### 4.14.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- Water piping contains air.
- Insufficient water flow.
- Main PCB damaged.



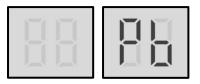
### 4.14.4 Procedure



Midea Aqua Tempo Super II Service Manual

Notes:

1. Water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN31 on the main PCB (labeled 24 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").


2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".

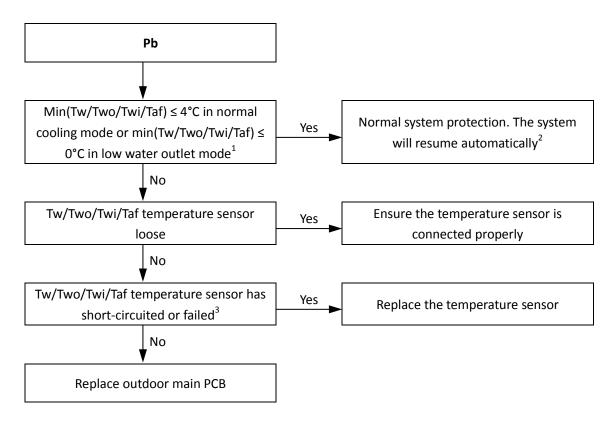


### 4.15 Pb Troubleshooting

Midea

### 4.15.1 Digital display output




#### 4.15.2 Description

- Water side heat exchanger anti-freeze protection.
- All units stop running.
- Error code is displayed on main PCB and ANTI.FREEZE icon is displayed on user interface.

#### 4.15.3 Possible causes

- Normal system protection.
- Temperature sensor not connected properly or has malfunctioned.
- Main PCB damaged.

#### 4.15.4 Procedure



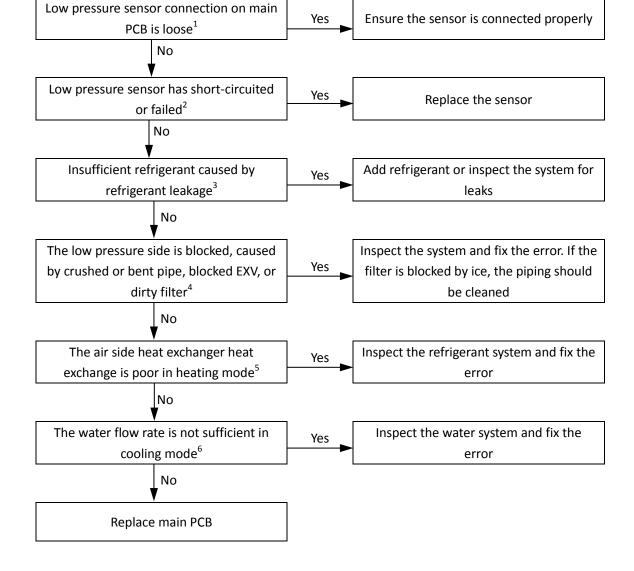
Notes:

- 2. Refer to Part 3, 6.7 "Water Side Heat Exchanger Anti-freeze Protection Control".
- 3. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".

Combined water outlet temperature sensor (Tw), Water side heat exchanger water outlet temperature sensor(Two), water side heat exchanger water inlet temperature sensor (Twi) and water side heat exchanger anti-freezing temperature sensor(Taf, include Taf1 and Taf2) connections are ports CN69 and CN31 on the main PCB (labeled 23 and 24 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").



### 4.16 PC Troubleshooting 4.16.1 Digital display output




#### 4.16.2 Description

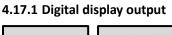
- Water side heat exchanger low pressure protection.
- All units stop running.
- Error code is displayed on main PCB and user interface.

#### 4.16.3 Possible causes

- Low pressure switch not connected properly or has malfunctioned.
- Insufficient refrigerant.
- Low pressure side blockage.
- Poor evaporator heat exchange in heating mode.
- Insufficient water flow in cooling mode.
- Main PCB damaged.



#### Notes:


- 1. Low pressure sensor connection is port CN40 on the main PCB (labeled 25 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB") .
- 2. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 3. To check for insufficient refrigerant: An insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once sufficient refrigerant has been charged into the system.
- 4. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 5. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 6. Check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.



PC



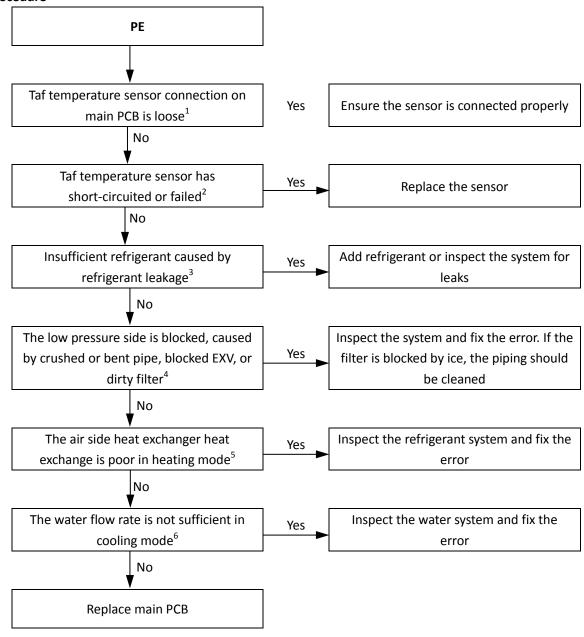
### 4.17 PE Troubleshooting





### 4.17.2 Description

- Water side heat exchanger low temperature protection.
- All units stop running.
- Error code is displayed on main PCB and user interface.


#### 4.17.3 Possible causes

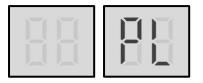
- Temperature sensor not connected properly or has malfunctioned.
- Insufficient refrigerant.
- Low pressure side blockage.
- Poor evaporator heat exchange in heating mode.
- Insufficient water flow in cooling mode.
- Main PCB damaged.

201709

Aqua Tempo Super II

### 4.17.4 Proc<u>edur</u>e




#### Notes:

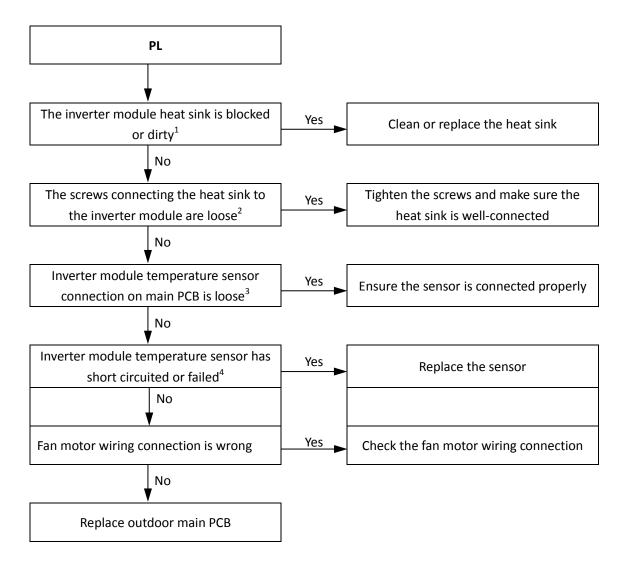
- 1. Water side heat exchanger anti-freezing temperature sensor (Taf, include Taf1 and Taf2) connection are ports CN69 and CN31 on the main PCB (labeled 23 and 24 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 4-5.3 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. To check for insufficient refrigerant: an insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once sufficient refrigerant has been charged into the system.
- 4. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 5. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 6. Check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

### Aqua Tempo Super II 4.18 PL Troubleshooting



### 4.18.1 Digital display output



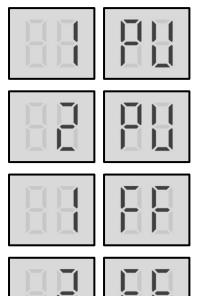

#### 4.18.2 Description

- PL indicates inverter module temperature protection. When the main inverter module temperature rises above 82°C, the system displays PL protection and all the units stop running. When the inverter module temperature drops below 60°C, the compressor enters re-start control
- When a PL error occurs 3 times in 100 minutes, a manual system restart is required before the system can resume operation.
- Error code is displayed on the main PCB and user interface.

#### 4.18.3 Possible causes

- Blocked, dirty or loose heat sink.
- Temperature sensor not connected properly or has malfunctioned.
- Fan motor wiring connection is wrong.
- Main PCB damaged.

# 4.18.4 Procedure




Notes:

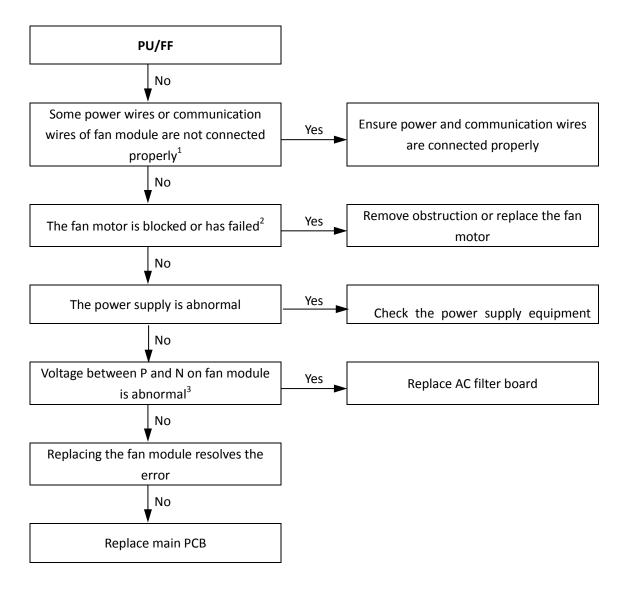
- 1. Refer to Figures 4-1.2 and 4-1.4 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".
- 2. Refer to Figures 4-1.2 and 4-1.4 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".
- 3. Inverter module temperature sensor connection are ports CN41 and CN42 on the main PCB (labeled 26 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").
- 4. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.3 "Temperature Sensor Resistance Characteristics".

### 4.19 PU/FF Troubleshooting

### 4.19.1 Digital display output



### 4.19.2 Description


- 1PU indicates fan module A protection.
- 2PU indicates fan module B protection.
- FF indicates PU protection has displayed 2times. When a FF occurred 3 times in 20 minutes, a manual system restart is required before the system can resume operation.
- All units stop running. The cause of an HH error should be addressed promptly in order to avoid system damage.
- Error code is only displayed on the main PCB and user interface.

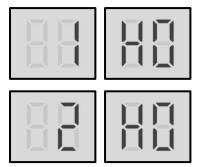
### 4.19.3 Possible causes

- Switch SW1 incorrectly set.
- Power or communication wires not connected properly.
- Fan motor blocked or has failed.
- Power supply abnormal.
- AC filter board damaged.
- Fan module damaged.
- Inverter module PCB damaged.



# A.19.4 Procedure




Notes:

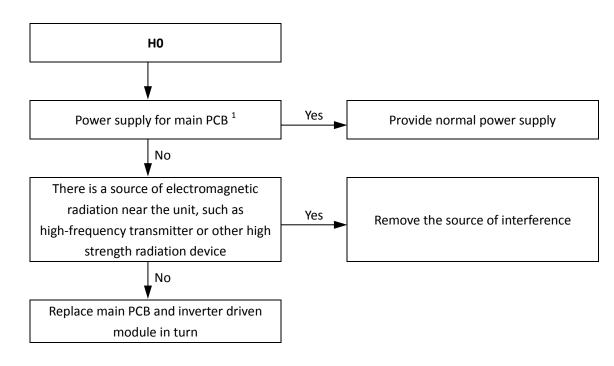
- 1. Refer to Figures 4-1.2 and 4-14 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".
- 2. Refer to Part 2, 1 "Layout of Functional Components".
- 3. The normal voltage between P and N on the fan module is 310V DC. Refer to Figures 4-1.2 and 4-1.4 in Part 4, 1 "Outdoor Unit Electric Control Box Layout" and to Figure 4-2.3 in Part 4, 2 "Fan module PCB"

### 4.20 H0 Troubleshooting



### 4.20.1 Digital display output




### 4.20.2 Description

- 1H0 indicates a Communication error between main control chip and compressor A inverter driver chip.
- 2H0 indicates a Communication error between main control chip and compressor B inverter driver chip.
- All units stop running.
- Error code H0 is displayed on main PCB and user interface.

### 4.20.3 Possible causes

- Power supply abnormal.
- Interference from a source of electromagnetic radiation.
- Main PCB or inverter driven module damaged.

#### 4.20.4 Procedure

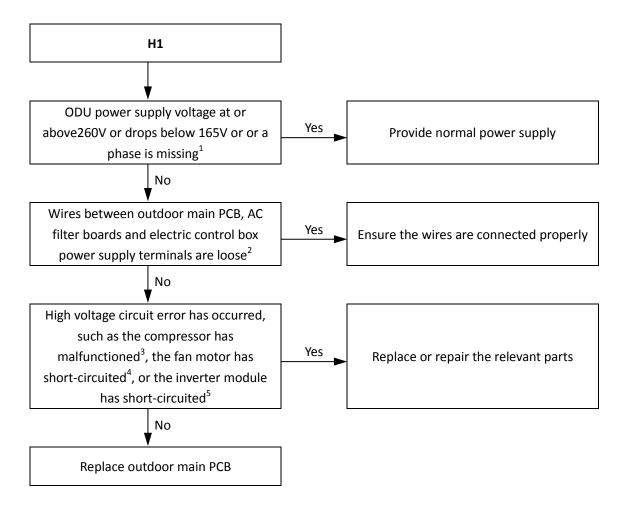


#### Notes:

1. Measure the voltages of power input port and on the main PCB. The normal voltage of power input port terminals is 220V. Refer to CN43 on the main PCB (labeled 9 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB").



### 4.21.2 Description


- Abnormal power supply voltage.
- All units stop running.
- Error code is only displayed on main PCB and user interface.

### 4.21.3 Possible causes

- Outdoor unit power supply voltage at or above260V or drops below 165V or a phase is missing.
- Loosened wiring within electric control box.
- High voltage circuit error.
- Main PCB damaged.



### 4.21.4 Procedure



Notes:

- 1. The normal voltage between A and N, B and N, and C and N is 198-242V.
- 2. Refer to Figures 4-1.2 to 4-1.4 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".
- 3. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned. Refer to Figures 4-4.4 and 4-4.5 in Part 4, 4.12.6 "xL0 troubleshooting".
- 4. The normal resistances of the fan motor coil among U V W are less than 10Ω. If a measured resistance is 0Ω, the fan motor has short-circuited. Refer to Part 2, 1 "Layout of Functional Components".
- 5. Set a multi-meter to buzzer mode and test any two terminals of P N and U V W of the inverter module. If the buzzer sounds, the inverter module has short-circuited. Refer to Figures 4-1.2 and 4-1.4 in Part4, 1 "Outdoor Unit Electric Control Box Layout" and to Figure 4-4.6.



4.22 H6 Troubleshooting

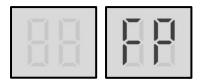


### 4.22.2 Description

- DC bus voltage protection.
- Only occurred in standby status.
- Error code is displayed on main PCB and user interface.

### 4.22.3 Possible causes

- Abnormal power supply voltage
- Loosened wiring within electric control box.
- High voltage circuit error.
- AC filter board damaged.
- 3-pahse bridge rectifier damaged.
- Compressor Inverter module damaged.


4.22.4 Procedure

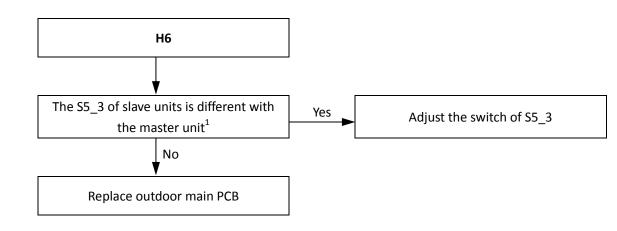
Refer to P6 protection: xL1 and Xl2.

### Aqua Tempo Super II 4.23 FP Troubleshooting



### 4.23.1 Digital display output




### 4.23.2 Description

- FP indicates pump in a combination system dial to different status. When the FP displayed, a manual system restart is required before the system can resume operation.
- All units stop running.
- Error code is only displayed on main PCB and user interface.

#### 4.23.3 Possible causes

- The S5\_3 of slave units is different with the master unit.
- Main PCB damaged.

### 4.23.4 Procedure



Note:

1. Dial switch S5 on the main PCB (labeled 3 in Figure 4-2.1 in Part 4, 2.2 "Outdoor unit main PCB")

### 5 Appendix to Part 5

### 5.1 Temperature Sensor Resistance Characteristics

Table 5-5.1: Outdoor ambient temperature sensor and outdoor heat exchanger temperature sensor resistance characteristics

| Temperature | Resistance | Temperature | Resistance | Temperature | Resistance | Temperature | Resistance |
|-------------|------------|-------------|------------|-------------|------------|-------------|------------|
| (°C)        | (kΩ)       | (°C)        | (kΩ)       | (°C)        | (kΩ)       | (°C)        | (kΩ)       |
| -20         | 115.3      | 20          | 12.64      | 60          | 2.358      | 100         | 0.6297     |
| -19         | 108.1      | 21          | 12.06      | 61          | 2.272      | 101         | 0.6115     |
| -18         | 101.5      | 22          | 11.50      | 62          | 2.191      | 102         | 0.5939     |
| -17         | 96.34      | 23          | 10.97      | 63          | 2.112      | 103         | 0.5768     |
| -16         | 89.59      | 24          | 10.47      | 64          | 2.037      | 104         | 0.5604     |
| -15         | 84.22      | 25          | 10.00      | 65          | 1.965      | 105         | 0.5445     |
| -14         | 79.31      | 26          | 9.551      | 66          | 1.896      | 106         | 0.5291     |
| -13         | 74.54      | 27          | 9.124      | 67          | 1.830      | 107         | 0.5143     |
| -12         | 70.17      | 28          | 8.720      | 68          | 1.766      | 108         | 0.4999     |
| -11         | 66.09      | 29          | 8.336      | 69          | 1.705      | 109         | 0.4860     |
| -10         | 62.28      | 30          | 7.971      | 70          | 1.647      | 110         | 0.4726     |
| -9          | 58.71      | 31          | 7.624      | 71          | 1.591      | 111         | 0.4596     |
| -8          | 56.37      | 32          | 7.295      | 72          | 1.537      | 112         | 0.4470     |
| -7          | 52.24      | 33          | 6.981      | 73          | 1.485      | 113         | 0.4348     |
| -6          | 49.32      | 34          | 6.684      | 74          | 1.435      | 114         | 0.4230     |
| -5          | 46.57      | 35          | 6.400      | 75          | 1.387      | 115         | 0.4116     |
| -4          | 44.00      | 36          | 6.131      | 76          | 1.341      | 116         | 0.4006     |
| -3          | 41.59      | 37          | 5.874      | 77          | 1.291      | 117         | 0.3899     |
| -2          | 39.82      | 38          | 5.630      | 78          | 1.254      | 118         | 0.3796     |
| -1          | 37.20      | 39          | 5.397      | 79          | 1.2133     | 119         | 0.3695     |
| 0           | 35.20      | 40          | 5.175      | 80          | 1.174      | 120         | 0.3598     |
| 1           | 33.33      | 41          | 4.964      | 81          | 1.136      | 121         | 0.3504     |
| 2           | 31.56      | 42          | 4.763      | 82          | 1.100      | 122         | 0.3413     |
| 3           | 29.91      | 43          | 4.571      | 83          | 1.064      | 123         | 0.3325     |
| 4           | 28.35      | 44          | 4.387      | 84          | 1.031      | 124         | 0.3239     |
| 5           | 26.88      | 45          | 4.213      | 85          | 0.9982     | 125         | 0.3156     |
| 6           | 25.50      | 46          | 4.046      | 86          | 0.9668     | 126         | 0.3075     |
| 7           | 24.19      | 47          | 3.887      | 87          | 0.9366     | 127         | 0.2997     |
| 8           | 22.57      | 48          | 3.735      | 88          | 0.9075     | 128         | 0.2922     |
| 9           | 21.81      | 49          | 3.590      | 89          | 0.8795     | 129         | 0.2848     |
| 10          | 20.72      | 50          | 3.451      | 90          | 0.8525     | 130         | 0.2777     |
| 11          | 19.69      | 51          | 3.318      | 91          | 0.8264     | 131         | 0.2708     |
| 12          | 18.72      | 52          | 3.192      | 92          | 0.8013     | 132         | 0.2641     |
| 13          | 17.80      | 53          | 3.071      | 93          | 0.7771     | 133         | 0.2576     |
| 14          | 16.93      | 54          | 2.959      | 94          | 0.7537     | 134         | 0.2513     |
| 15          | 16.12      | 55          | 2.844      | 95          | 0.7312     | 135         | 0.2451     |
| 16          | 15.34      | 56          | 2.738      | 96          | 0.7094     | 136         | 0.2392     |
| 17          | 14.62      | 57          | 2.637      | 97          | 0.6884     | 137         | 0.2334     |
| 18          | 13.92      | 58          | 2.540      | 98          | 0.6682     | 138         | 0.2278     |
| 19          | 13.26      | 59          | 2.447      | 99          | 0.6486     | 139         | 0.2223     |

Table 5-5.2: Compressor top temperature sensor and discharge pipe temperature sensor resistance characteristics

| <b>A</b> | idea |
|----------|------|
|          | acu  |

| Temperature | Resistance | Temperature | Resistance | Temperature | Resistance | Temperature | Resistance |
|-------------|------------|-------------|------------|-------------|------------|-------------|------------|
| (°C)        | (kΩ)       | (°C)        | (kΩ)       | (°C)        | (kΩ)       | (°C)        | (kΩ)       |
| -20         | 542.7      | 20          | 68.66      | 60          | 13.59      | 100         | 3.702      |
| -19         | 511.9      | 21          | 65.62      | 61          | 13.11      | 101         | 3.595      |
| -18         | 483.0      | 22          | 62.73      | 62          | 12.65      | 102         | 3.492      |
| -17         | 455.9      | 23          | 59.98      | 63          | 12.21      | 103         | 3.392      |
| -16         | 430.5      | 24          | 57.37      | 64          | 11.79      | 104         | 3.296      |
| -15         | 406.7      | 25          | 54.89      | 65          | 11.38      | 105         | 3.203      |
| -14         | 384.3      | 26          | 52.53      | 66          | 10.99      | 106         | 3.113      |
| -13         | 363.3      | 27          | 50.28      | 67          | 10.61      | 107         | 3.025      |
| -12         | 343.6      | 28          | 48.14      | 68          | 10.25      | 108         | 2.941      |
| -11         | 325.1      | 29          | 46.11      | 69          | 9.902      | 109         | 2.860      |
| -10         | 307.7      | 30          | 44.17      | 70          | 9.569      | 110         | 2.781      |
| -9          | 291.3      | 31          | 42.33      | 71          | 9.248      | 111         | 2.704      |
| -8          | 275.9      | 32          | 40.57      | 72          | 8.940      | 112         | 2.630      |
| -7          | 261.4      | 33          | 38.89      | 73          | 8.643      | 113         | 2.559      |
| -6          | 247.8      | 34          | 37.30      | 74          | 8.358      | 114         | 2.489      |
| -5          | 234.9      | 35          | 35.78      | 75          | 8.084      | 115         | 2.422      |
| -4          | 222.8      | 36          | 34.32      | 76          | 7.820      | 116         | 2.357      |
| -3          | 211.4      | 37          | 32.94      | 77          | 7.566      | 117         | 2.294      |
| -2          | 200.7      | 38          | 31.62      | 78          | 7.321      | 118         | 2.233      |
| -1          | 190.5      | 39          | 30.36      | 79          | 7.086      | 119         | 2.174      |
| 0           | 180.9      | 40          | 29.15      | 80          | 6.859      | 120         | 2.117      |
| 1           | 171.9      | 41          | 28.00      | 81          | 6.641      | 121         | 2.061      |
| 2           | 163.3      | 42          | 26.90      | 82          | 6.430      | 122         | 2.007      |
| 3           | 155.2      | 43          | 25.86      | 83          | 6.228      | 123         | 1.955      |
| 4           | 147.6      | 44          | 24.85      | 84          | 6.033      | 124         | 1.905      |
| 5           | 140.4      | 45          | 23.89      | 85          | 5.844      | 125         | 1.856      |
| 6           | 133.5      | 46          | 22.89      | 86          | 5.663      | 126         | 1.808      |
| 7           | 127.1      | 47          | 22.10      | 87          | 5.488      | 127         | 1.762      |
| 8           | 121.0      | 48          | 21.26      | 88          | 5.320      | 128         | 1.717      |
| 9           | 115.2      | 49          | 20.46      | 89          | 5.157      | 129         | 1.674      |
| 10          | 109.8      | 50          | 19.69      | 90          | 5.000      | 130         | 1.632      |
| 11          | 104.6      | 51          | 18.96      | 91          | 4.849      |             |            |
| 12          | 99.69      | 52          | 18.26      | 92          | 4.703      | ]           |            |
| 13          | 95.05      | 53          | 17.58      | 93          | 4.562      | ]           |            |
| 14          | 90.66      | 54          | 16.94      | 94          | 4.426      | 1           |            |
| 15          | 86.49      | 55          | 16.32      | 95          | 4.294      | 1           |            |
| 16          | 82.54      | 56          | 15.73      | 96          | 4.167      | 1           |            |
| 17          | 78.79      | 57          | 15.16      | 97          | 4.045      | 1           |            |
| 18          | 75.24      | 58          | 14.62      | 98          | 3.927      | 1           |            |
| 19          | 71.86      | 59          | 14.09      | 99          | 3.812      | 1           |            |

Table 5-5.3: Inverter module temperature sensor resistance characteristics

| Temperature | Resistance<br>(kΩ) | Temperature | Resistance | Temperature | Resistance | Temperature | Resistance<br>(kΩ) |
|-------------|--------------------|-------------|------------|-------------|------------|-------------|--------------------|
| (°C)        |                    | (°C)        | (kΩ)       | (°C)        | (kΩ)       | (°C)        |                    |
| -30         | 971.4              | 10          | 109.0      | 50          | 19.70      | 90          | 5.000              |
| -29         | 912.8              | 11          | 103.9      | 51          | 18.97      | 91          | 4.855              |
| -28         | 858.2              | 12          | 99.02      | 52          | 18.26      | 92          | 4.705              |
| -27         | 807.3              | 13          | 94.44      | 53          | 17.59      | 93          | 4.566              |
| -26         | 759.7              | 14          | 90.11      | 54          | 16.94      | 94          | 4.431              |
| -25         | 715.3              | 15          | 86.00      | 55          | 16.32      | 95          | 4.301              |
| -24         | 673.6              | 16          | 82.09      | 56          | 15.73      | 96          | 4.176              |
| -23         | 634.7              | 17          | 78.38      | 57          | 15.16      | 97          | 4.055              |
| -22         | 598.2              | 18          | 74.87      | 58          | 14.62      | 98          | 3.938              |
| -21         | 564.1              | 19          | 71.53      | 59          | 14.10      | 99          | 3.825              |
| -20         | 532.2              | 20          | 68.36      | 60          | 13.60      | 100         | 3.716              |
| -19         | 502.2              | 21          | 65.34      | 61          | 13.12      | 101         | 3.613              |
| -18         | 474.1              | 22          | 62.47      | 62          | 12.65      | 102         | 3.514              |
| -17         | 447.7              | 23          | 59.75      | 63          | 12.22      | 103         | 3.418              |
| -16         | 423.0              | 24          | 57.17      | 64          | 11.79      | 104         | 3.326              |
| -15         | 399.8              | 25          | 54.71      | 65          | 11.39      | 105         | 3.235              |
| -14         | 378.0              | 26          | 52.36      | 66          | 10.99      | 106         | 3.148              |
| -13         | 357.5              | 27          | 50.13      | 67          | 10.62      | 107         | 3.063              |
| -12         | 338.2              | 28          | 48.01      | 68          | 10.25      | 108         | 2.982              |
| -11         | 320.1              | 29          | 45.99      | 69          | 9.909      | 109         | 2.902              |
| -10         | 303.1              | 30          | 44.07      | 70          | 9.576      | 110         | 2.826              |
| -9          | 287.1              | 31          | 42.23      | 71          | 9.253      | 111         | 2.747              |
| -8          | 272.0              | 32          | 40.48      | 72          | 8.947      | 112         | 2.672              |
| -7          | 257.8              | 33          | 38.81      | 73          | 8.646      | 113         | 2.599              |
| -6          | 244.4              | 34          | 37.23      | 74          | 8.362      | 114         | 2.528              |
| -5          | 231.9              | 35          | 35.71      | 75          | 8.089      | 115         | 2.460              |
| -4          | 220.0              | 36          | 34.27      | 76          | 7.821      | 116         | 2.390              |
| -3          | 208.7              | 37          | 32.89      | 77          | 7.569      | 117         | 2.322              |
| -2          | 198.2              | 38          | 31.58      | 78          | 7.323      | 118         | 2.256              |
| -1          | 188.2              | 39          | 30.33      | 79          | 7.088      | 119         | 2.193              |
| 0           | 178.8              | 40          | 29.13      | 80          | 6.858      | 120         | 2.132              |
| 1           | 169.9              | 41          | 27.98      | 81          | 6.640      | 121         | 2.073              |
| 2           | 161.5              | 42          | 26.89      | 82          | 6.432      | 122         | 2.017              |
| 3           | 153.6              | 43          | 25.85      | 83          | 6.230      | 123         | 1.962              |
| 4           | 146.1              | 44          | 24.85      | 84          | 6.033      | 124         | 1.910              |
| 5           | 139.1              | 45          | 23.90      | 85          | 5.847      | 125         | 1.859              |
| 6           | 132.3              | 46          | 22.98      | 86          | 5.667      |             |                    |
| 7           | 126.0              | 47          | 22.10      | 87          | 5.492      | 1           |                    |
| 8           | 120.0              | 48          | 21.26      | 88          | 5.322      | -           |                    |
| 9           | 114.3              | 48          | 20.47      | 89          | 5.159      | 4           |                    |



### 5.2 Normal Operating Parameters of Refrigerant System

Under the following conditions, the operating parameters given in Tables 5-5.4 and 5-5.5 should be observed:

- If the outdoor ambient temperature is high, the system is being run in normal cooling mode with the following settings: temperature 5°C.
- If the outdoor ambient temperature is high, the system is being run in low water outlet cooling mode with the following settings: temperature 0°C.
- If the outdoor ambient temperature is low, the system is being run in heating mode with the following settings: temperature 55°C.
- The system has been running normally for more than 30 minutes.

| Outdoor ambient temperature    | °C  | < 10    | 10 to 25 | 25 to 35 | 35 to 48 | > 48    |  |  |
|--------------------------------|-----|---------|----------|----------|----------|---------|--|--|
| Average discharge temperature  | °C  | 50-80   | 55-85    | 60-90    | 65-98    | 70-100  |  |  |
| Average discharge superheat    | °C  | 17-30   | 17-33    | 17-34    | 17-36    | 10-32   |  |  |
| Discharge pressure             | MPa | 1.7-2.8 | 1.8-2.8  | 2.0-3.6  | 2.5-3.8  | 3.1-4.2 |  |  |
| Average suction superheat      | °C  | 3-7     | 4-9      | 5-11     | 6-12     | 8-12    |  |  |
| Suction pressure               | MPa | 0.6-0.9 | 0.7-1.0  | 0.8-1.2  | 1.0-1.3  | 1.2-1.4 |  |  |
| Average suction temperature    | °C  | 5-15    | 5-18     | 5-20     | 6-20     | 8-15    |  |  |
| Т3                             | °C  | 0-12    | 12-30    | 28-46    | 40-52    | 50-56   |  |  |
| Tz/7                           | °C  | 22-25   | 12-28    | 28-45    | 40-52    | 50-55   |  |  |
| Taf                            | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| Twi                            | °C  | 0-30    | 0-30     | 0-30     | 0-30     | 0-30    |  |  |
| Тwo                            | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| Tw                             | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| DC fan motor current           | А   | 0.2-6   | 2-6      | 3-6      | 4-6      | 5-6     |  |  |
| DC inverter compressor current | Α   | 6-12    | 2-16     | 3-17     | 4-18     | 5-16    |  |  |

Table 5-5.4: Outdoor unit in normal cooling mode operating parameters

Note:

1. All the sensors please refer to Figure 2-2.1 and 2-2.2 in Part 2, 2 "Piping Diagrams".

Table 5-5.5: Outdoor unit in low water outlet cooling mode operating parameters

| Table 5.5.5. Galadori and mitor watch outlet cooling mode operating parameters |     |         |          |          |          |         |  |  |
|--------------------------------------------------------------------------------|-----|---------|----------|----------|----------|---------|--|--|
| Outdoor ambient temperature                                                    | °C  | < 10    | 10 to 25 | 25 to 35 | 35 to 48 | > 48    |  |  |
| Average discharge temperature                                                  | °C  | 50-80   | 55-85    | 60-90    | 65-98    | 70-100  |  |  |
| Average discharge superheat                                                    | °C  | 17-30   | 17-33    | 17-34    | 17-36    | 10-32   |  |  |
| Discharge pressure                                                             | MPa | 1.7-2.8 | 1.8-2.8  | 2.0-3.6  | 2.5-3.8  | 3.1-4.2 |  |  |
| Average suction superheat                                                      | °C  | 3-7     | 4-9      | 5-11     | 6-12     | 8-12    |  |  |
| Suction pressure                                                               | MPa | 0.6-0.9 | 0.7-1.0  | 0.8-1.2  | 1.0-1.3  | 1.2-1.4 |  |  |
| Average suction temperature                                                    | °C  | 2-15    | 3-18     | 4-20     | 5-20     | 6-16    |  |  |
| Т3                                                                             | °C  | 0-12    | 12-30    | 28-46    | 40-52    | 50-56   |  |  |
| Tz/7                                                                           | °C  | 22-25   | 12-28    | 28-45    | 40-52    | 50-55   |  |  |
| Taf                                                                            | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| Twi                                                                            | °C  | 0-30    | 0-30     | 0-30     | 0-30     | 0-30    |  |  |
| Тwo                                                                            | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| Tw                                                                             | °C  | 5-25    | 5-25     | 5-25     | 5-25     | 5-25    |  |  |
| DC fan motor current                                                           | Α   | 0.3-6   | 2-6      | 3-6      | 4-6      | 5-6     |  |  |
| DC inverter compressor current                                                 | Α   | 4-12    | 2-16     | 3-17     | 4-18     | 5-16    |  |  |
|                                                                                |     | •       |          |          | -        | -       |  |  |

Note:

1. All the sensors please refer to Figure 2-2.1 and 2-2.2 in Part 2, 2 "Piping Diagrams".

| Outdoor ambient temperature    | °C  | < -10      | -10 to 0 | 0 to 7   | 7 to 20 | > 20    |  |  |
|--------------------------------|-----|------------|----------|----------|---------|---------|--|--|
| Average discharge temperature  | °C  | 40-95      | 42-96    | 44-97    | 45-97   | 50-98   |  |  |
| Average discharge superheat    | °C  | 17-35      | 17-35    | 17-35    | 17-33   | 14-33   |  |  |
| Discharge pressure             | MPa | 1.7-2.6    | 1.8-2.8  | 1.9-3.3  | 2.2-3.5 | 2.3-3.8 |  |  |
| Average suction superheat      | °C  | -2-0       | -2-2     | -1-4     | 0-6     | 1-8     |  |  |
| Suction pressure               | MPa | 0.2-0.5    | 0.3-0.7  | 0.4-0.9  | 0.6-1.2 | 0.8-1.4 |  |  |
| Average suction temperature    | °C  | -22 to -11 | -16 to 2 | -10 to 5 | 0 to 15 | 5 to 18 |  |  |
| Т3                             | °C  | -20 to -11 | -16 to 0 | -10 to 2 | 1 to 12 | 5 to 15 |  |  |
| Tz/7                           | °C  | -19 to -4  | -14 to 1 | -5 to -2 | 1 to 6  | 2 to 10 |  |  |
| Taf                            | °C  | 15-45      | 15-50    | 15-55    | 15-55   | 15-55   |  |  |
| Twi                            | °C  | 15-40      | 15-45    | 15-50    | 15-50   | 15-50   |  |  |
| Two                            | °C  | 18-45      | 18-50    | 18-55    | 18-55   | 18-55   |  |  |
| Tw                             | °C  | 18-45      | 18-50    | 18-55    | 18-55   | 18-55   |  |  |
| DC fan motor current           | Α   | 5-6        | 4-6      | 2-6      | 0.5-6   | 0.3-6   |  |  |
| DC inverter compressor current | Α   | 1-15       | 1-16     | 1-17     | 2-18    | 2-18    |  |  |

Table 5-5.4: Outdoor unit in heating mode operating parameters

Note:

1. All the sensors please refer to Figure 2-2.1 and 2-2.2 in Part 2, 2 "Piping Diagrams".



iOS Version





Android Version



Mid plication



iOS Version

### **Commercial Air Conditioner Division**

### **Midea Group**

Add.: Midea Headquarters Building, 6 Midea Avenue, Shunde, Foshan, Guangdong, China

Postal code: 528311

Tel: +86-757-26338346 Fax: +86-757-22390205

global.midea.com cac.midea.com

Note: Product specifications change from time to time as product improvements and

developments are released and may vary from those in this document.