Service Manual

WSAN-YMi 21 - 81

Contents

General information	5
Component Layout and Refrigerant Circuits	7
Control	15
Diagnosis and Troubleshooting	29

General Information

1	Unit	Capacities	and	External	Appearance	. 6
_	•	oa pa ci ci co	u		, ippearance in the second sec	4

1 Unit Capacities and External Appearance

1.1 Unit Capacities

Table 1-1.1: Capacity range

Size	21	31	41	61	71	81	61	71	81
kW	4,80	6,70	8,60	12,4	14,1	16,2	12,4	14,1	16,2

Notes:

- 1. The full model names can be obtained by substituting the asterisk in the model name format given in the left-hand column of the table above with the shortened model names given in the table. For example, the model name for the 9kW model is MHC-V9W/D2N8.
- 2. The presence or omission of the letter R in the model names indicates the unit's power supply:
 - R: 3-phase, 380-415V, 50Hz; Omitted: 1-phase, 220-240V, 50Hz.

1.2 External Appearance

Table 1-1.2: Unit appearance

Component Layout and Refrigerant Circuits

1 Layout of Functional Components	8
2 Piping Diagrams	12
3 Refrigerant Flow Diagrams	14

1 Layout of Functional Components

Size 21-41

Figure 2-1.1: top view

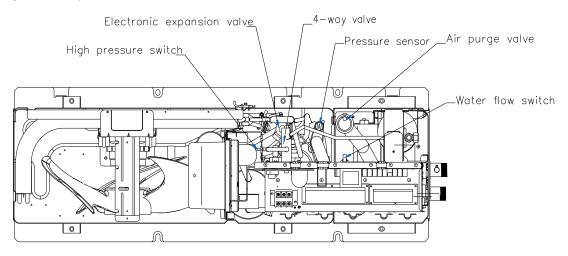


Figure 2-1.2: ront view

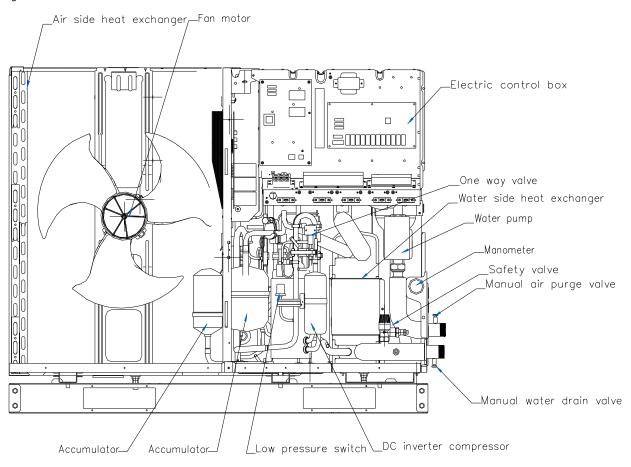
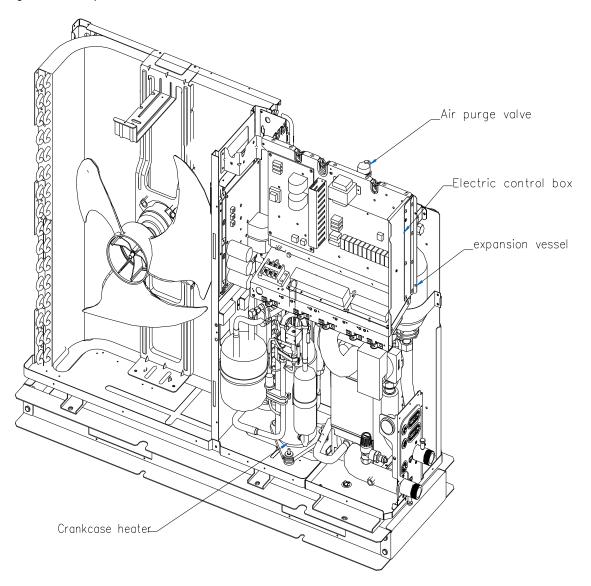



Figure 2-1.3: oblique view

Size 61 - 81

Figure 2-1.4: top view

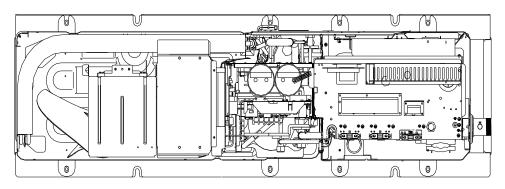


Figure 2-1.5: front view

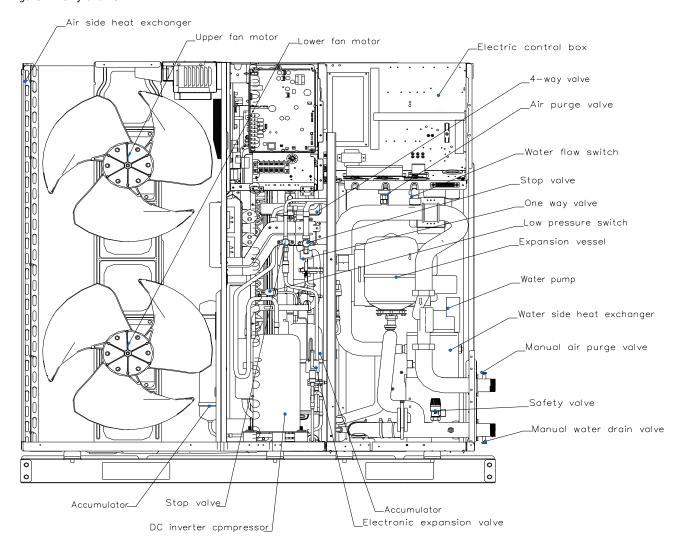
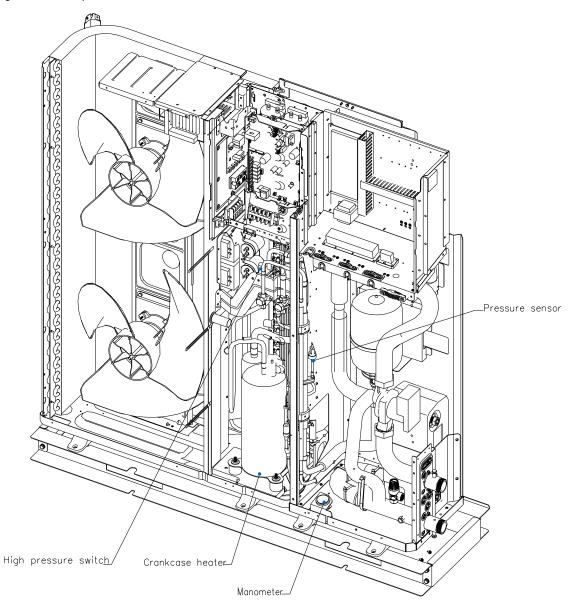
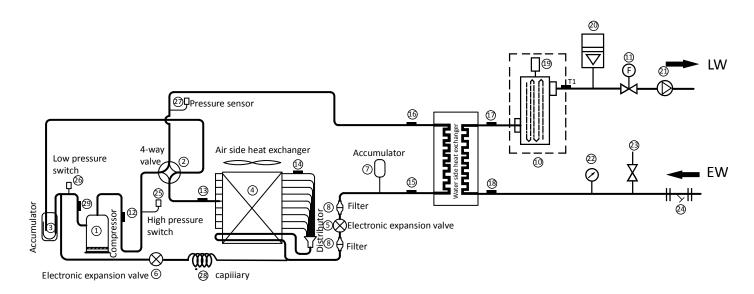




Figure 2-1.6: oblique view

2 Piping Diagrams

Figure 2-2.1: piping diagram

	T		
1	Compressor	16	Refrigerant outlet (gas pipe) temp. sensor
2	4-Way Valve	17	Water outlet temp. sensor
3	Gas-liquid separator	18	Water Inlet temp. sensor
4	Air side heat exchanger	19	Air purge valve
5	Electronic expansion valve	20	Expansion vessel
6	Single-way electromagnetic valve	21	Circulating pump
7	Liquid Tank	22	Manometer
8	Strainer	23	Safety valve
9	Water Side Heat Exchanger(Plate Heat Exchange)	24	Y-shape filter
10	Backup heater (optional)	25	High Pressure Switch
11	Flow switch	26	Low Pressure Switch
12	Discharge gas sensor	27	Pressure valve
13	Outdoor temperature sensor	28	Capillary
14	Evaporation sensor in heating(Condenser sensor in cooling)	29	Suction gas sensor
15	Refrigerant inlet (liquid pipe) temp. sensor		

Key components:

1. Accumulator:

Stores liquid refrigerant and oil to protect compressor from liquid hammering.

2. Electronic expansion valve (EXV):

Controls refrigerant flow and reduces refrigerant pressure.

3. Four-way valve:

Controls refrigerant flow direction. Closed in cooling mode and open in heating mode. When closed, the air side heat exchanger functions as a condenser and water side heat exchanger functions as an evaporator; when open, the air side heat exchanger function as an evaporator and water side heat exchanger function as a condenser.

4. High and low pressure switches:

Regulate refrigerant system pressure. When refrigerant system pressure rises above the upper limit or falls below the lower limit, the high or low pressure switches turn off, stopping the compressor.

5. Air purge valve:

Automatically removes air from the water circuit.

6. Safety valve:

Prevents excessive water pressure by opening at 43.5 psi (3 bar) and discharging water from the water circuit.

7. Expansion vessel:

Balances water system pressure. (Expansion vessel volume: 2L in 5/7/9kW units and 3.2L in 12-16kW units.)

8. Water flow switch:

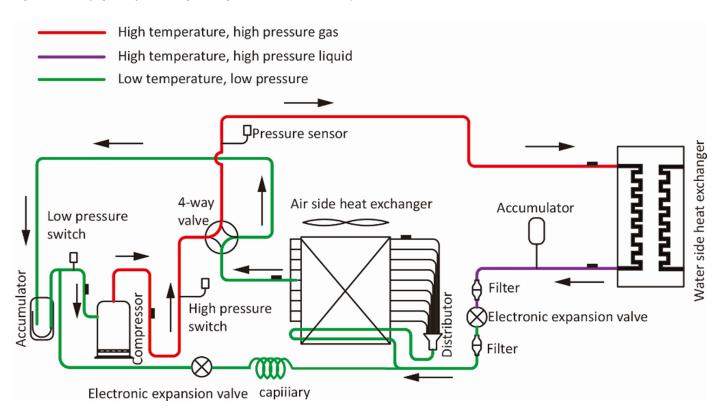
Detects water flow rate to protect compressor and water pump in the event of insufficient water flow.

9. Backup heater:

Provides additional heating capacity when the heating capacity of the heat pump is insufficient due to very low outdoor temperature. Also protects the external water piping from freezing.

10. Manometer:

Provides water circuit pressure readout.


11. Water pump:

Circulates water in the water circuit.

3 Refrigerant Flow Diagrams

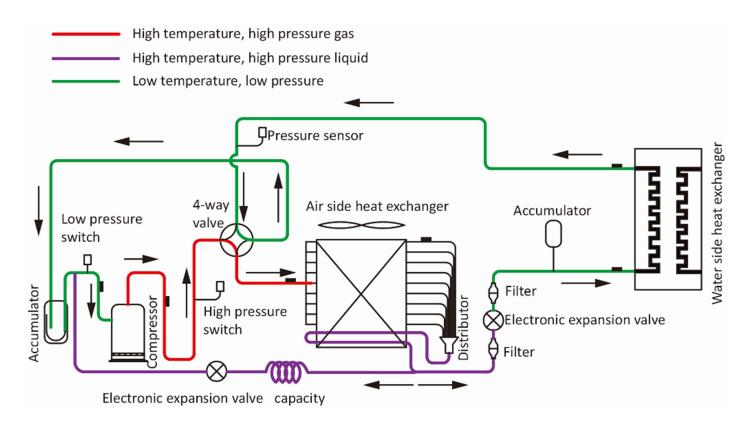

Heating and domestic hot water operation

Figure 2-3.1: Refrigerant flow during heating or domestic hot water operation

Cooling and defrosting operation

Figure 2-3.2: Refrigerant flow during cooling and defrosting operations

Control

1 Stop Operation	. 16
2 Standby Control	. 16
3 Startup Control	. 17
4 Normal Operation Control	. 19
5 Protection Control	. 21
6 Special Control	. 25
7 Role of Temperature Sensors in Control Functions	27

1 Stop Operation

The stop operation occurs for one of the following reasons:

- 1. Abnormal shutdown: in order to protect the compressors, if an abnormal state occurs the system makes a 'stop with thermo off' operation and an error code is displayed on the outdoor unit PCB digital displays and on the user interface.
- 2. The system stops when the set temperature has been reached.

2 Standby Control

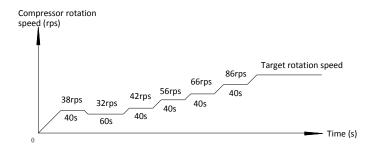
2.1 Crankcase Heater Control

The crankcase heater is used to prevent refrigerant from mixing with compressor oil when the compressors are stopped. The crankcase heater is controlled according to outdoor ambient temperature and the compressor on/off state. When the outdoor ambient temperature is above 8°C or the compressor is running, the crankcase heater is off; when the outdoor ambient temperature is at or below 8°C and either the compressor has been stopped for more than 3 hours or the unit has just been powered-on (either manually or when the power has returned following a power outage), the crankcase heater turns on.

2.2 Water Pump Control

When the outdoor unit is in standby, the internal and external circulator pumps run continuously.

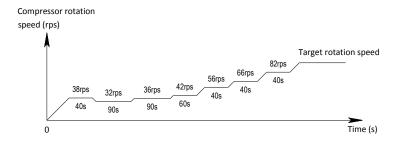
3 Startup Control


3.1 Compressor Startup Delay Control

In initial startup control and in restart control (except in oil return operation and defrosting operation), compressor startup is delayed such that a minimum of the set re-start delay time has elapsed since the compressor stopped, in order to prevent frequent compressor on/off and to equalize the pressure within the refrigerant system. The compressor restart delays for cooling and heating modes are set on the user interface. Refer to the WSAN-YMi Engineering Data Book Part 3, 7.5 "COOL MODE SETTING Menu" and Part 3, 7.6 "HEAT MODE SETTING Menu".

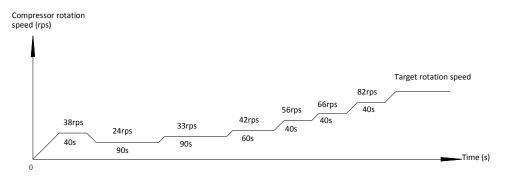
3.2 Compressor Startup Program

In initial startup control and in re-start control, compressor startup is controlled according to outdoor ambient temperature. Compressor startup follows one of two startup programs until the target rotation speed is reached. Refer to Figures 3-4.1, 3-4.2 and 3-4.3.


Figure 3-4.1: Compressor startup program^{1,2} when ambient temperature is above 4°C

Notes:

- 1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.
- 2. This program is used on all WSAN-YMi models: 5kW to 16kW, single phase and three phase.


Figure 3-4.2: size 21-41 compressor startup program¹ when ambient temperature is at or below 4°C

Notes:

1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

Figure 3-4.3: size 61-81 compressor startup program¹ when ambient temperature is at or below 4°C

Notes:

1. Once the first, 40-second stage of the program is complete, the program proceeds to the subsequent stages in a step-by-step fashion and exits when the target rotation speed has been reached.

3.3 Startup Control for Heating and Domestic Hot Water Operation

Table 3-4.1: Component control during startup in heating and domestic hot water modes

Component	Wiring diagram label	5/7/9kW	12/14/16 kW	Control functions and states
Inverter compressor	СОМР	•	•	Compressor startup program selected according to ambient temperature ¹
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	12
Lower DC fan motor	FAN_DOWN		•	Fan runs at maximum speed ²
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature and suction superheat
Four-way valve	ST	•	•	On

Notes:

- 1. Refer to Figure 3-4.1, Figure 3-4.2 and Figure 3-4.3 in Part 3, 4.2 "Compressor Startup Program".
- 2. Refer to Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

3.4 Startup Control for Cooling Operation

Table 3-4.2: Component control during startup in cooling mode

Component	Wiring diagram label	5/7/9kW	12/14/16 kW	Control functions and states
Inverter compressor	СОМР	•	•	Compressor startup program selected according to ambient temperature ¹
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Fan was at maximum and d ²
Lower DC fan motor	FAN_DOWN		•	Fan run at maximum speed ²
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to outdoor ambient temperature, discharge temperature and suction superheat
Four-way valve	ST	•	•	Off

Notes:

- 1. Refer to Figure 3-4.1, Figure 3-4.2 and Figure 3-4.3 in Part 3, 4.2 "Compressor Startup Program".
- 2. Refer to Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

4 Normal Operation Control

4.1 Component Control during Normal Operation

Table 3-5.1: Component control during heating and domestic hot water operations

Component	Wiring diagram	5/7/9kW	12/14/16kW	Control functions and states
Inverter compressor	СОМР	•	•	Controlled according to load requirement from hydronic system
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger
Lower DC fan motor	FAN_DOWN		•	pipe temperature
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge temperature, suction superheat and compressor speed
Four-way valve	ST	•	•	On

Table 3-5.2: Component control during cooling operation

Component	Wiring diagram	5/7/9kW	12/14/16kW	Control functions and states
Inverter compressor	СОМР	•	•	Controlled according to load requirement from hydronic system
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger
Lower DC fan motor	FAN_DOWN		•	pipe temperature
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge temperature, suction superheat and compressor speed
Four-way valve	ST	•	•	Off

4.2 Compressor Output Control

The compressor rotation speed is controlled according to the load requirement. Before compressor startup, the WSAN-YMi outdoor unit determines the compressor target speed according to outdoor ambient temperature, leaving water set temperature and actual leaving water temperature and then runs the appropriate compressor startup program. Refer to Part 3, 4.2 "Compressor Startup Program". Once the startup program is complete, the compressor runs at the target rotation speed.

During operation the compressor speed is controlled according to the rate of change in water temperature, the refrigerant system pressure and the refrigerant temperature.

4.3 Compressor Step Control

The running speed of six-pole compressors (used on all models) in rotations per second (rps) is one third of the frequency (in Hz) of the electrical input to the compressor motor. The frequency of the electrical input to the compressor motors can be altered at a rate of 1Hz per second.

4.4 Four-way Valve Control

The four-way valve is used to change the direction of refrigerant flow through the water side heat exchanger in order to switch between cooling and heating/DHW operations. Refer to Figures 2-3.1 and 2-3.2 in Part 2, 3 "Refrigerant Flow Diagrams".

During heating and DHW operations, the four-way valve is on; during cooling and defrosting operations, the four-way valve is off.

4.5 Electronic Expansion Valve Control

The position of the electronic expansion valve (EXV) is controlled in steps from 0 (fully closed) to 480 (fully open).

- At power-on:
 - The EXV first closes fully, then moves to the standby position (304 (steps)). After 30 seconds the EXV moves to an initial running position, which is determined according to operating mode and outdoor ambient temperature. After a further 150 seconds, the EXV is controlled according to suction superheat and discharge temperature. Once a further 6 minutes have elapsed, the EXV is then controlled according to suction superheat, discharge temperature and compressor speed.
- When the outdoor unit is in standby:
 - The EXV is at position 304 (steps).
- When the outdoor unit stops:
 - The EXV first closes fully, then moves to the standby position (304 (steps)).

4.6 Outdoor Fan Control

The speed of the outdoor unit fan(s) is adjusted in steps, as shown in Table 3-5.3.

Table 3-5.3: Outdoor fan speed steps

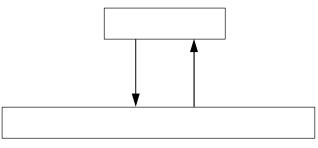
	Fan speed (rpm)								
Fan speed index	FLAM	71.347	10-16k\	W (1Ph)	12-16kW (3Ph)				
	5kW	7kW	Upper fan ¹	Lower fan ²	Upper fan ¹	Lower fan ²			
0	0	0	0	0	0	0			
1	300	300	300	-	300	-			
2	340	340	330	300	330	300			
3	400	400	400	380	400	380			
4	450	450	460	440	460	440			
5	520	520	520	500	520	500			
6	600	600	630	610	630	610			
7	680	680	780	760	780	760			
8	730	730	-	-	-	-			
9	800	800	-	-	-	-			

Notes:

- The upper fan is labelled FAN_UP in the wiring diagram. Refer to the WSAN-YMi Engineering Data Book Part 2, 4 "Wiring diagram".
- The lower fan is labelled FAN_DOWN in the wiring diagram. Refer to the WSAN-YMi Engineering Data Book Part 2, 4 "Wiring diagram".

4.7 Spray liquid cooling control

When the discharge temperature of compressor exceeds $105\,^{\circ}$ C, the solenoid valve opens and the frequency of compressor drops in order to reduce the discharge temperature. When the discharge temperature is below $90\,^{\circ}$ C, the solenoid valve closes.


If the discharge temperature exceeds 108° C while the spray liquid cooling control is in progress, which is judged every 20s, the frequency of compressor drops 4Hz until the minimum frequency which differs from every model. When the discharge temperature is below 95° C, the compressor runs at the current frequency.

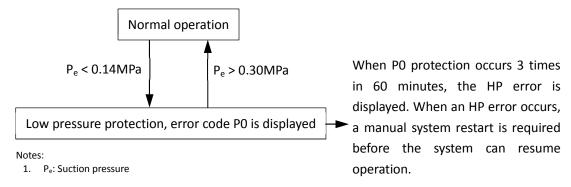
5 Protection Control

5.1 High Pressure Protection Control

This control protects the refrigerant system from abnormally high pressure and protects the compressor from transient spikes in pressure.

Figure 3-6.1: High pressure protection control

Notes:

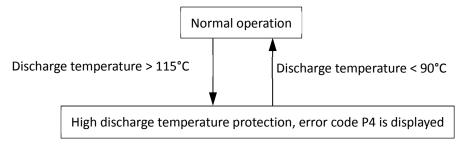

1. P_c: Discharge pressure

When the discharge pressure rises above 4.2MPa the system displays P1 protection and the unit stops running. When the discharge pressure drops below 3.2MPa, the compressor enters re-start control.

5.2 Low Pressure Protection Control

This control protects the refrigerant system from abnormally low pressure and protects the compressor from transient drops in pressure.

Figure 3-6.2: Low pressure protection control



When the suction pressure drops below 0.14MPa the system displays P0 protection and the unit stops running. When the suction pressure rises above 0.3MPa, the compressor enters re-start control.

5.3 Discharge Temperature Protection Control

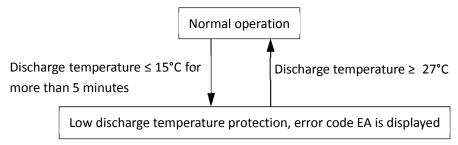

This control protects the compressor from abnormally high temperatures and transient spikes in temperature.

Figure 3-6.3: High discharge temperature protection control

When the discharge temperature rises above 115°C the system displays P4 protection and the unit stops running. When the discharge temperature drops below 90°C, the compressor enters re-start control.

Figure 3-6.4:Low discharge temperature protection control

When the discharge temperature is at or below 15°C for more than 5 minutes, the system displays EA protection and the unit stops running. When the discharge temperature rises to 27°C or higher, the compressor enters re-start control.

5.4 Compressor Current Protection Control

This control protects the compressor from abnormally high currents.

Figure 3-6.5: Compressor current protection control

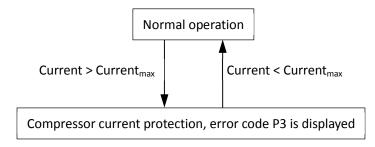
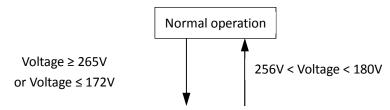


Table 3-6.1: Current limitation for compressors


Model name	21 - 41	61 - 81	61 - 81 3phase
Compressor model	SVB220FLGMC-L	MVB42FCBMC	MVB42FCBMC
Current _{max}	20A	31A	15A

When the compressor current rises above $Current_{max}$ the system displays P3 protection and the unit stops running. When the compressor current drops below $Current_{max}$, the compressor enters re-start control.

5.5 Voltage Protection Control

This control protects the WSAN-YMi from abnormally high or abnormally low voltages.

Figure 3-6.4: Compressor voltage protection control

Compressor voltage protection, error code H7 is displayed

When the phase voltage of AC power supply is at or above 265V for more than 30 seconds, the system displays H7 protection and the unit stops running. When the phase voltage drops below 265V for more than 30 seconds, the refrigerant system restarts once the compressor re-start delay has elapsed. When the phase voltage is at or below 172V, the system displays H7 protection and the unit stops running. When the AC voltage rises to at or more than 180V, the refrigerant system restarts once the compressor re-start delay has elapsed.

5.6 DC Fan Motor Protection Control

This control protects the DC fan motors from strong winds and abnormal power supply. DC fan motor protection occurs when any one of the following three sets of conditions are met:

- Outdoor ambient temperature is at or above 4°C and actual fan speed differs from target fan speed by more than 200rpm for more than 3 minutes.
- Outdoor ambient temperature is below 4°C and actual fan speed differs from target fan speed by more than 300rpm for more than 3 minutes.
- Actual fan speed is less than 150rpm for more than 20 seconds.

When DC fan motor protection control occurs the system displays the H6 error code and the unit stops running. After 3 minutes, the unit restarts automatically. When H6 protection occurs 10 times in 120 minutes, the HH error is displayed. When an HH error occurs, a manual system restart is required before the system can resume operation.

5.7 Water Side Heat Exchanger Anti-freeze Protection Control

This control protects the water side heat exchanger from ice formation. The water side heat exchanger electric heater is controlled according to outdoor ambient temperature, water side heat exchanger water inlet temperature and water side heat exchanger water outlet temperature.

In heating mode, if the outdoor temperature falls below 3°C and either the water side heat exchanger water inlet temperature or water side heat exchanger water outlet temperature are below 25°C, the water side heat exchanger electric heater turns on. When the outdoor ambient temperature rises above 5°C and either the water side heat exchanger water inlet temperature or water side heat exchanger water outlet temperature are above 30°C, the water side heat exchanger turns off.

When water side heat exchanger anti-freeze protection occurs the system displays error code Pb and the unit stops running.

lf

ambient temperature <3 and min(Twin, Twout)<5

or

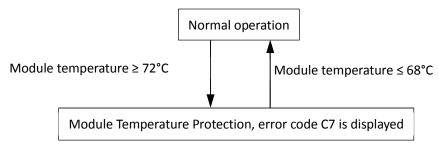
min(Twin, Twout)<2

the unit goes into anti-freeze function.

First, PUMP start with maximum speed and compressor OFF for 5mins

Then check if min(Twin, Twout) $\geq 8^{\circ}$ C

if yes, the unit finish anti-freeze function;


if no, the unit start the compressor and finish anti-freeze function when min(Twin,Twout)>15degree.

But if the system is integrated with IBH (electrical heater for system), the IBH will turn on instead of the compressor.

5.8 Module Temperature Protection Control

This control protects the module from abnormally high temperatures only for MHC-V5(7,9)W/D2N8.

Figure 3-6.3: Module Temperature Protection Control

When the module temperature rises at or above 72°C the system displays C7 protection and the unit stops running. When the module temperature drops at or below 68°C, the compressor enters re-start control.

6 Special Control

6.1 Oil Return Operation

In order to prevent the compressor from running out of oil, the oil return operation is conducted to recover oil that has flowed out of the compressor and into the refrigerant piping. When the oil return operation is being conducted, the outdoor unit refrigerant system main PCB displays code d0.

Timing of oil return operation:

When the compressor cumulative operating time with running rotation speed less than 42rps reaches 6 hours.

The oil return operation ceases when any one of the following three conditions occurs:

- Oil return operation duration reaches 5 minutes.
- Compressor stops.
- Mode change command is received.

Tables 3-7.1 show component control during oil return operation in cooling mode.

Table 3-7.1: Outdoor unit component control during oil return operation in cooling mode

Component	Wiring diagram label	5/7/9kW	12/14/16 kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at oil return operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger pipe
Lower DC fan motor	FAN_DOWN		•	temperature
Electronic expansion valve	EXV	•	•	304 (steps)
Four-way valve	ST	•	•	Off

Tables 3-7.2 show component control during oil return operation in heating and DHW modes.

Table 3-7.2: Outdoor unit component control during oil return operation in heating and DHW modes

Component	Wiring diagram label	5/7/9kW	12/14/16 kW	Control functions and states
Inverter compressor	COMP	•	•	Runs at oil return operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger pipe
Lower DC fan motor	FAN_DOWN		•	temperature
Electronic expansion valve	EXV	•	•	304 (steps)
Four-way valve	ST	•	•	On

6.2 Defrosting Operation

In order to recover heating capacity, the defrosting operation is conducted when the outdoor unit air side heat exchanger is performing as a condenser. The defrosting operation is controlled according to outdoor ambient temperature, air side heat exchanger refrigerant outlet temperature and the compressor running time.

The defrosting operation ceases when any one of the following three conditions occurs:

- Defrosting operation duration reaches 10 minutes.
- The air side heat exchanger refrigerant outlet temperature is above 8°C for more than 10 seconds.
- The air side heat exchanger refrigerant outlet temperature is above 12°C.

Table 3-7.3: Component control during defrosting operation

Component	Wiring diagram label	5/7/9kW	12/14/16	Control functions and states
Inverter compressor	COMP	•	•	Runs at defrosting operation rotation speed
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	0#
Lower DC fan motor	FAN_DOWN		•	Off
Electronic expansion valve	EXV	•	•	Fully open
Four-way valve	ST	•	•	Off

6.3 Fast DHW Operation

Fast DHW operation is used to quickly meet a requirement for domestic hot water when DHW priority has been set on the user interface. Refer to the WSAN-YMi Engineering Data Book Part 3, 7.4 "DHW MODE SETTING Menu".

Domestic hot water demand priority can be ended by changing the switch on controller from "on" to "off".

Table 3-7.5: Component control during fast DHW operation

Component	Wiring diagram	5/7/9kW	12/14/16kW	Control functions and states
Inverter compressor	COMP	•	•	Controlled according to load requirement
DC fan motor / Upper DC fan motor	FAN1 / FAN_UP	•	•	Controlled according to outdoor heat exchanger
Lower DC fan motor	FAN_DOWN		•	pipe temperature
Electronic expansion valve	EXV	•	•	Position (steps) from 0 (fully closed) to 480 (fully open), controlled according to discharge superheat
Four-way valve	ST	•	•	On
Tank electric heater	ТВН	•	•	On

7 Role of Temperature Sensors in Control Functions

Low pressure Compressor High pressure switch Pressure sensor Air side heat exchanger Distributor Electronic expansion valve Water side heat exchanger Expansion vessel Safety valve Manometer Water pump Stop valve 3-way valve water tank Domestic hot loops Floor heating Fan coil units Distributor Distributor Collector

Figure 3-7.1: Location of the temperature sensors on 5~16KW unit systems

Notes:

1. The names and functions of the temperature sensors labelled 1 to 12 in this figure are detailed in Table 3-7.1.

Number	Sensor name ¹	Sensor code	Mode	Control functions
		Тр	Heating	 Electronic expansion valve control2 Discharge superheat control
1	Discharge pipe temperature sensor		Cooling	 Electronic expansion valve control2 Outdoor fan control3 Discharge superheat control
2	Outdoor ambient temperature	T4	Heating	 Compressor startup control4 Compressor output control5 Electronic expansion valve control2 Defrosting operation control7 Low pressure protection control7 Crankcase heater control9
	sensor		Cooling	 Compressor startup control4 Compressor output control5 Electronic expansion valve control2 Outdoor fan control3 Crankcase heater control9
3	Air side heat exchanger refrigerant outlet temperature	Т3	Heating	 Electronic expansion valve control2 Defrosting operation control7 Outdoor fan control3
	sensor		Cooling	Compressor output control5Outdoor fan control3
4	Water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor	T2	Heating DHW	■ Compressor output control5
5	Water side heat exchanger refrigerant outlet (gas pipe) temperature sensor	T2B	Heating	■ Freeze prevention control10
6	Suction pipe temperature sensor	Th	Heating Cooling	Electronic expansion valve control2
7	Water side heat exchanger water inlet temperature sensor	Tw_in	Heating Cooling	■ Freeze prevention control10
8	Water side heat exchanger water outlet temperature sensor	Tw_out	Heating Cooling DHW	 Compressor output5 and on/off control6 Freeze prevention control10
	Dealess de déche de serve		Heating	 Compressor output control5 AHS (Auxiliary Heating Source) controll DHW priority control11 Auto mode control
9	Backup electric heater water outlet temperature sensor	T1	Cooling	 Compressor output5 and on/off control6 Auto mode control
			DHW	 Compressor output control5 Backup electric heater control DHW priority control11
10	Auxiliary heat source water outlet temperature sensor	T1B	Heating	Auxiliary heat source controlCompressor output control5
11	Room temperature sensor	Та	Heating	Auto mode control Climate related curve
			Cooling	Compressor output control5
12	Domestic hot water tank temperature sensor heater) control	T5	DHW	 Disinfection operation control DHW tank immersion heater control Backup electric heater control TBH (DHW tank electrical Solar energy kit control Compressor output control5 DHW priority control11

Notes:

- Sensor names in this service manual referring to refrigerant flow is named according refrigerant flow during cooling operation refer to Part 2, 3 "Refrigerant Flow Diagrams".
- 2. Refer to Part 3, 4.5 "Electronic Expansion Valve Control".
- 3. Refer to Part 3, 4.6 "Outdoor Fan Control".
- 4. Refer to Part 3, 3 "Startup Control".
- 5. Refer to Part 3, 4.2 "Compressor Output Control".

- 6. Refer to Part 3, 1 "Stop Operation".
- 7. Refer to Part 3, 6.2 "Defrosting Operation".
- 8. Refer to Part 3, 5.2 "Low Pressure Protection Control".
- 9. Refer to Part 3, 2.1 "Crankcase Heater Control".
- 10. Refer to Part 3, 2.2 "Freeze Prevention Control".
- 11. Refer to Part 3, 6.4 "Fast DHW Operation".

Diagnosis and Troubleshooting

1 Outdoor Unit Electric Control Box Layout	30
2 Outdoor Unit PCBs	33
3 Error Code Table	48
4 Troubleshooting	50
5 Appendix to Part 4	102

1 Outdoor Unit Electric Control Box Layout

size 21 - 41

Figure 4-1.1: Electric control box front view

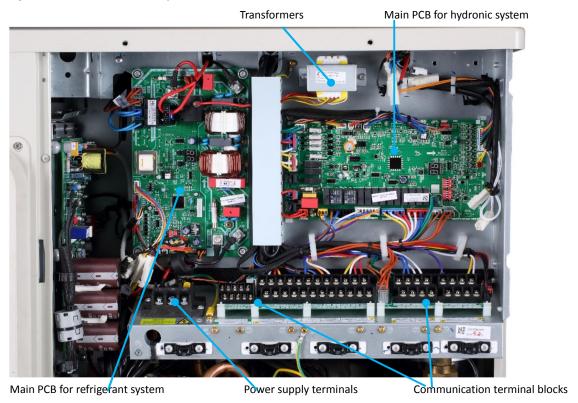
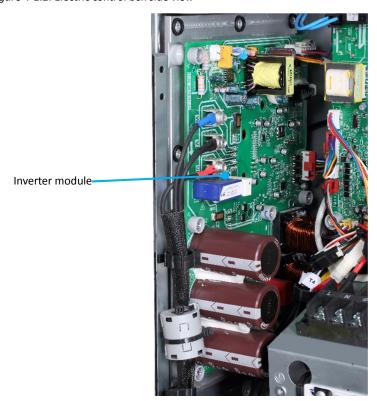
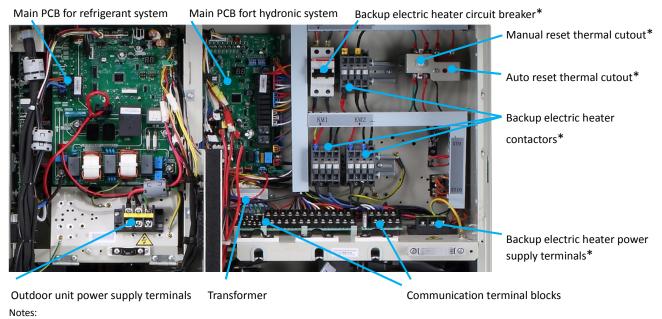




Figure 4-1.2: Electric control box side view

Size 61 - 81 1-phase

Figure 4-1.3: Electric control box front view

1. The components marked with asterisk are applied to the model equipped with backup electric heater.

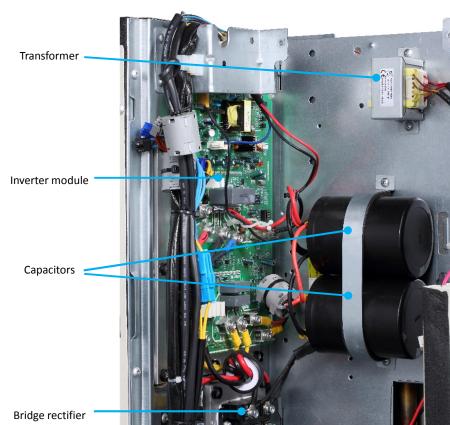


Figure 4-1.4: Electric control box side view

Size 61 - 81 3-phase

Figure 4-1.5: Electric control box front view – top layer

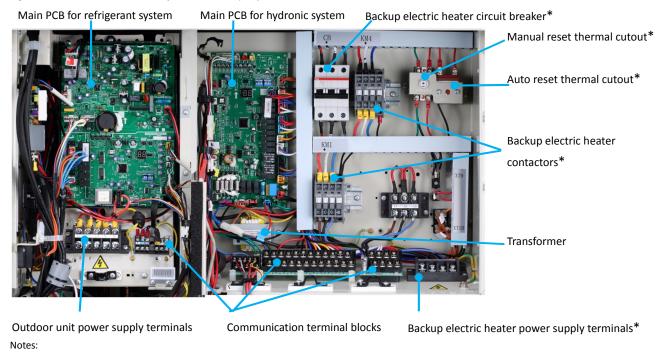


Figure 4-1.6: Electric control box front view – bottom layer

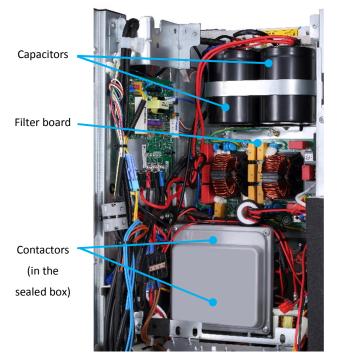


Figure 4-1.7: Electric control box side view

2 Outdoor Unit PCBs

2.1 Types

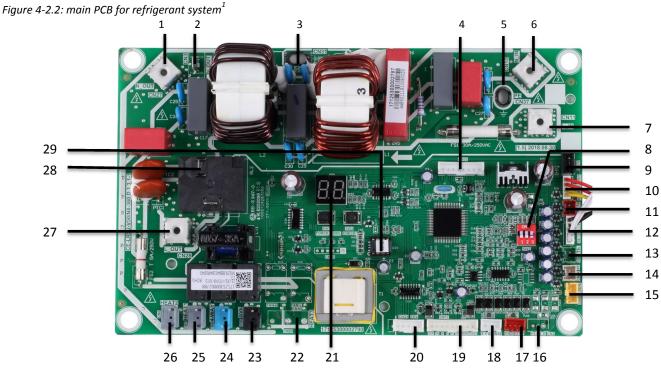
WSAN-YMi outdoor units have two main PCBs – one for the hydronic system and one for the refrigerant system. The hydronic system main PCB is the same on all WSAN-YMi models. There are three types of refrigerant system main PCB: one for the 5/7/9kW single phase models, one for the 12kW to 16kW single phase models and one for the 12kW to 16kW three phase models.

In addition to the two main PCBs, all models also have an inverter module and the three phase models also have a filter board.

The locations of each PCB in the outdoor unit electric control boxes are shown in Figures 4-1.1 to 4-1.7 in Part 4, 1 "Outdoor Unit Electric Control Box Layout".

2.2 Main PCB for Hydronic System

Figure 4-2.1: Outdoor unit main PCB for hydronic system^{1, 2}


Notes:

- ${\bf 1.} \quad \text{This PCB is used on all WSAN-YMi models: 5kW to 16kW, single phase and three phase.}$
- 2. Label descriptions are given in Table 4-2.1.

Table 4-2.1: Main PCB for hydronic system

Label in		
Figure 4-2.1	Code	Content
1	CN5	Input port for solar energy
2	CN4	Output port for transformer
3	CN36	Power supply port for the wired controller
4	CN12	Port for remote switch
5	CN8	Port for flow switch
6	CN14	Port for communication with the wired controller
7	CN19	Port for communication with PCB for refrigerant system
8	CN6	Port for temp. sensors(TW_out, TW_in, T1, T2, T2B)
9	CN13	Port for temp. sensors(T5, domestic hot water tank temp. sensor)
10	CN15	Port for temp. sensors(T1B, the final outlet temp. sensor)
11	DIS1	Digital display
12	S3	Rotary dip switch
13	S1, S2	DIP switch
14	CN34	Output port for deforst
15	CN40	Port for anti-freeze electric heating tape(internal)
16	CN41	Port for anti-freeze electric heating tape(internal)
17	CN25	Output port for external heating source/ Output for operation
18	CN27	Port for anti-freeze electric heating tape(external)/ port for solar energy pump/ output port for re-mote alarm
19	CN37	Port for external circulted pump (P_o)/ pipe pump(P_d)/ mix pump(P_c) / 2-way valve SV2
20	CN24	Port for SV1(3-way valve) and SV3
21	CN28	Port for internal pump
22	CN20	Input port for transformer
23	CN1	Feedback port for temperature switch
24	CN21	Port for power supply
25	FUSE1	Fuse
26	CN2	Feedback port for external temp. switch(shorted in default)
27	CN22	Control port for backup heater/ booster heater
28	CN3	Control port for room thermostat
29	IC18	EEPROM

2.3 Main PCBs for Refrigerant System, Inverter Modules and Filter Boards Size 21 - 41 1-phase

Notes:

1. Label descriptions are given in Table 4-2.2.

Table 4-2.2: 21 - 41 main PCB for refrigerant system

Label in Figure	6- 1	
4-2.2	Code	Content
1	CN27	Output port N for invert module PCB
2	CN3	Output port N for hydro-box control board
3	CN31	Port for ground wire
4	CN32	Port for IC programming
5	CN37	Port for ground wire
6	CN10	Input port for neutral wire
7	CN11	Input port for live wire
8	SW3	DIP switch
9	CN24	Input port for +12V/5V
10	CN13	Port for low pressure switch and high pressure switch
11	CN8	Port for Tp temp. sensor
12	CN9	Port for outdoor ambient temp. sensor and condenser temp. sensor
13	CN1	Port for Th temp. sensor
14	CN14	Port for TF temp. sensor
15	CN4	Port for pressure sensor
16	CN2	Reserved
17	CN29	Port for communication with hydro-box control board
18	CN30	Reserved
19	CN17	Port for communication with invert module PCB
20	CN33	Port for electrical expansion value
21	DSP1	Digital display
22	CN6	Port for chassis electrical heating tape
23	CN5	Port for SV6 value
24	CN6	Port for 4-way value
25	CN7	Port for compressor electric heating tape1
26	CN8	Port for compressor electric heating tape2
	CNIGO	Output part I for invert modula DCD
27	CN28	Output port L for invert module PCB
27 28	RL2	Output port L for hydro-box control board

Figure 4-2.3: 21 - 41 inverter module

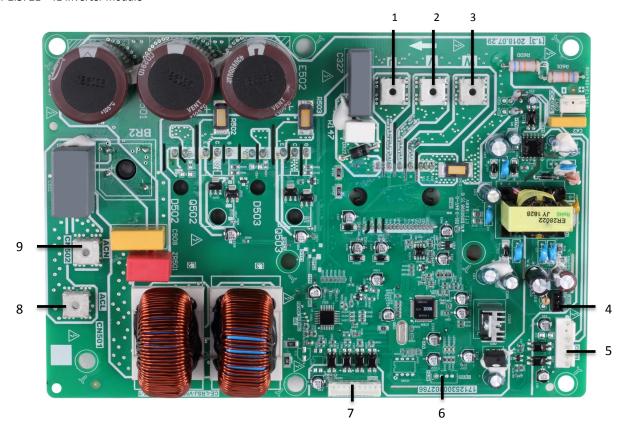
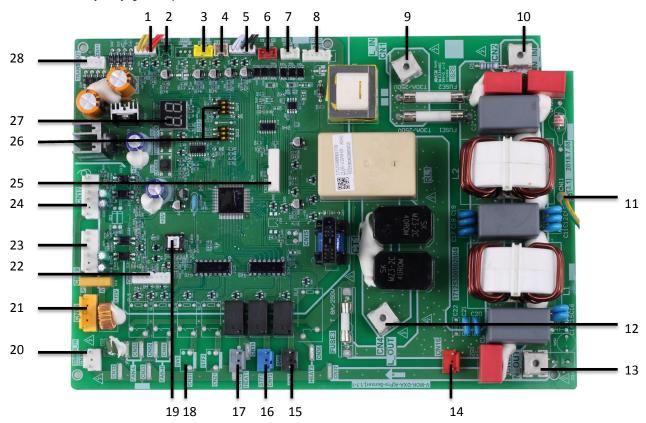
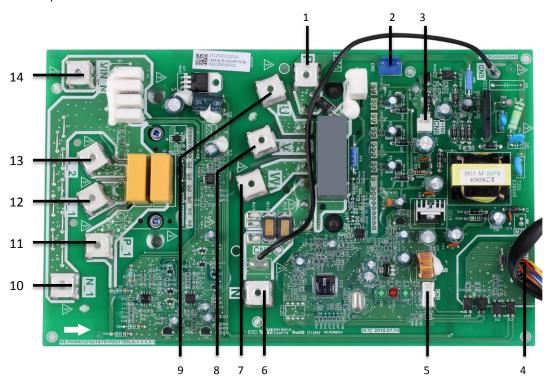



Table 4-2.3: 21 - 41 outdoor unit inverter module

Label in Figure 4-2.3	Code	Content
1	U	Compressor connection port U
2	V	Compressor connection port V
3	W	Compressor connection port W
4	CN20	Output port for +12V/5V(CN20)
5	CN19	Port for fan
6	CN302	Reserved
7	CN32	Port for communication with PCB for refrigerant system
8	CN501	Input port L for rectifier bridge
9	CN502	Input port N for rectifier bridge

61 - 81 1-phase

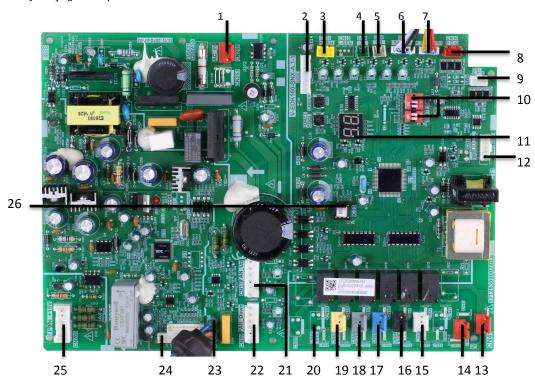
Figure 4-2.4: main PCB for refrigerant system¹


Notes:

1. Label descriptions are given in Table 4-2.4.

Table 4-2.4: 61 - 81 main PCB for refrigerant system

Label in	Codo	Contont
Figure 4-2.4	Code	Content
1	CN12	Port for low pressure switch and rapid detection
2	CN24	Port for Th temp. sensor
3	CN28	Port for pressure sensor
4	CN8	Port for TP temp. sensor
5	CN9	Port for outdoor ambient temp. sensor and condenser temp. sensor
6	CN10	Port for communication with hydro-box control board
7	CN30	Reserved
8	CN22	Port for electrical expansion value
9	CN1	Input port for live wire
10	CN2	Input port for neutral wire
11	CN11	Ground wire
12	CN4	Output port for live wire
13	CN3	Output port for neutral wire
14	CN16	Power supply port for hydro-box control board
15	CN13	Port for SV6 value
16	CN13	Port for 4-way value
17	CN14	Port for compressor electrical heating tape
18	CN31	Port for chassis electrical heating tape(Optional)
19	IC13	EEPROM
20	CN26	Input port for transformer
21	CN18	Power supply port for fan
22	CN6	Port for communication with invert module PCB
23	CN19	Port for down fan
24	CN17	Port for up fan
25	CN300	Port for IC programming
26	SW3 SW4	DIP switch
27	DIS1	Digital display
28	CN51	Output port for transformer


Figure 4-2.5: 61 - 81 3-phase inverter module

Label in Figure 4-2.5	Code	Content
1	Р	Input port P for IPM module
2	CN9	Input port for high pressure switch
3	CN6	Output port for +15V
4	CN1	Port for communication with PCB for refrigerant system
5	CN2	Reserved
6	N	Input port N for IPM module
7	W	Compressor connection port W
8	V	Compressor connection port V
9	U	Compressor connection port U
10	N_1	Output port N for PFC module
11	P_1	Output port P for PFC module
12	L_1	Input port for PFC inductance L_1
13	L_2	Input port for PFC inductance L_2
14	VIN-N	Input port N for PFC module

61 - 81 3-phase

Figure 4-2.6:main PCB for refrigerant system ¹

Notes:
 Label descriptions are given in Table 4-2.6.

Table 4-2.6: 61 - 81 main PCB for refrigerant system

Label in Figure 4-2.6	Code	Content
1	CN250	Power supply port for PCB for refrigerant system
2	CN301	Port for IC programming
3	CN36	Port for pressure sensor
4	CN4	Port for Th temp. sensor
5	CN8	Port for TP temp. sensor
6	CN9	Port for outdoor ambient temp. sensor and condenser temp. sensor
7	CN6	Port for low pressure switch and rapid detection
8	CN10	Port for communication with hydro-box control board
9	CN11	Reserved
_	SW7	
10	SW8	DIP switch
11	DIS1	Digital display
12	CN22	Port for electrical expansion value
13	CN41	Port for power supply
14	CN61	Power supply port for hydro-box control board
15	CN63	Out port for PFC contactor coil
16	CN64	Out port for P_line contactor coil
17	CN65	Port for 4-way value
18	CN66	Port for electric heating tape
19	CN67	PTC control
20	CN68	Port for chassis electrical heating tape(optional)
21	CN17	Port for up fan
22	CN19	Port for down fan
23	CN70\71	Power supply port for module
24	CN201	Port for communication with invert module PCB
25	CN205	Port for voltage check
26	IC23	EEPROM

Figure 4-2.7: 61 - 81 3-phase inverter module

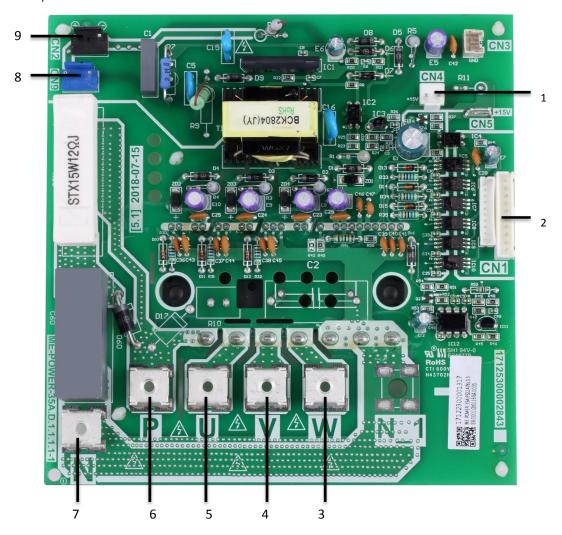


Table 4-2.7: inverter module

Label in Figure 4-2.7	Code	Content
1	CN4	Output port for +15V
2	CN1	Port for communication with PCB for refrigerant system
3	W	Compressor connection port W
4	V	Compressor connection port V
5	U	Compressor connection port U
6	Р	Input port P for IPM module
7	N	Input port N for IPM module
8	CN9	Input port N for high pressure switch
9	CN2	Power for switching power supply

Figure 4-2.8: 61 - 81 3-phase filter board

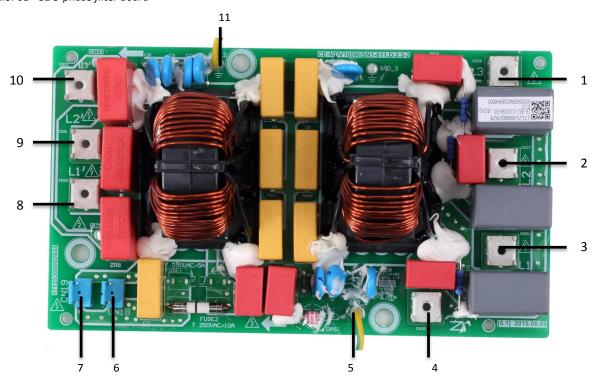


Table 4-2.8: filter board

rable r 2.6. jiiter board		
Label in Figure 4-2.8	Code	Content
1	L3	Power supply L3
2	L2	Power supply L2
3	L1	Power supply L1
4	N	Power supply N
5	GND_1	Ground wire
6	CN18	Power supply port for load
7	CN19	Power supply port for main control board
8	L1'	Power filtering output L1'
9	L2'	Power filtering output L2'
10	L3′	Power filtering output L3'
11	GND_2	Ground wire

2.4 Check Buttons

2.4.1 Main PCB for hydronic system SW4 system check button

Button SW4 is used to check the parameters of the hydronic system. Refer to Table 4-2.1 First, press Button SW4 for 3 seconds and the first parameter (operating mode) will be displayed. Then, on each subsequent press, the next parameter is displayed.

Table 4-2.9: SW4 system check

Number	Parameters displayed on digital display	Remarks	
1	Operating mode	0: off; 2: cooling; 3: heating; 5: DHW.	
2	Output requirement before correction (kW)	Actual value = value displayed	
3	Corrected output requirement (kW)	Actual value = value displayed	
4	WSAN-YMi leaving water temperature (°C) Actual value = value displayed		
5	Auxiliary heating source leaving water temperature (°C)	Actual value = value displayed	
6	Target leaving water temperature calculated from climate-related curves (°C)	Actual value = value displayed	
7	Room temperature (°C)	Actual value = value displayed	
8	DHW tank temperature (°C)	Actual value = value displayed	
9	Heating mode: Water side heat exchanger refrigerant inlet temperature (°C) Cooling mode: Water side heat exchanger refrigerant outlet temperature (°C)	Actual value = value displayed	
10	Heating mode: Water side heat exchanger refrigerant outlet temperature (°C) Cooling mode: Water side heat exchanger refrigerant inlet temperature (°C)	Actual value = value displayed	
11	Water side heat exchanger water outlet temperature (°C)	Actual value = value displayed	
12	Water side heat exchanger water inlet temperature (°C)	Actual value = value displayed	
13	Outdoor ambient temperature (°C)	 When no decimal point is displayed: Temperature is ≥ -9°C Actual value = value displayed When decimal point is displayed between the two digits: Temperature is ≤ -10°C Actual value = value displayed x -10 Example: "1.2" indicates -12°C 	
14	Backup electric heater first element current (A)	Actual value = value displayed	
15	Backup electric heater second element current (A)	Actual value = value displayed	
16	Most recent code	"" is displayed if no error or protection events have occurred since start-up	
17	Error or protection code previous to most recent code	"" is displayed if no error or protection events have occurred since start-up	
18	Error or protection code previous to 17	"" is displayed if no error or protection events have occurred since start-up	
19	Hydronic system main PCB software version		
20			

2.4.2 Main PCB for refrigerant system SW2 system check button

Button SW2 is used to check the parameters of the refrigerant system. Refer to Table 4-2.2 First, press Button SW2 for 3 seconds and the first parameter (operating mode) will be displayed. Then, on each subsequent press, the next parameter is displayed.

Table 4-2.10: SW2 system check

Number	Parameters displayed on digital display	Remarks
1	Operating mode	0: standby; 2: cooling; 3: heating; 4 forced cooling.
2	Fan speed index	Refer to Note 1
3	Compressor target speed command from hydronic system (rps)	Actual value = value displayed
4	Compressor target speed after restriction by the compressor output control (rps)	Actual value = value displayed
5	Heating mode: Air side heat exchanger refrigerant inlet temperature (°C) Cooling mode: Air side heat exchanger refrigerant outlet temperature (°C)	Actual value = value displayed
6	Outdoor ambient temperature (°C)	 When no decimal point is displayed: Temperature is ≥ -9°C Actual value = value displayed When decimal point is displayed between the two digits: Temperature is ≤ -10°C Actual value = value displayed x -10 Example: "1.2" indicates -12°C
7	Discharge temperature (°C)	When the temperature < 100 °C, actual value = value displayed. When the temperature \geqslant 100 °C, actual value = value displayed \times 10
8	Suction temperature (°C)	Actual value = value displayed
9	ΤF	For MHC-V5(7,9)W/D2N8, module temperature is displayed if no error has occurred and "—" is displayed if error has occurred. For MHC-V12(14,16)W/D2(R)N8, "—" is displayed.
10	EXV position	Steps = value displayed × 8
11	Input current (A)	Actual value = value displayed
12	Compressor current (A)	Actual value = value displayed
13	Input voltage	Actual value = value displayed × 10
14	DC voltage	Actual value = value displayed × 10
15	Air side heat exchanger refrigerant pressure (MPa)	Actual value = value displayed
16	Refrigerant system main PCB software version	
17	Most recent error or protection code	"nn" is displayed if no error or protection events have occurred since start-up
18		i

^{1.} The fan speed index is related to the fan speed in rpm as described in Table 3-5.3 in Part 3, 5.6 "Outdoor Fan Control".

2.4.3 Digital Display Output

Table 4-2.11: Digital display output in different operating states

Outdoor unit state	Parameters displayed on hydronic	Parameters displayed on refrigerant
Outdoor unit state	system DSP1	system DSP1
On standby	0	0
Narmalanaration	Locuing water temporature (%C)	Running speed of the compressor in
Normal operation	Leaving water temperature (°C)	rotations per second
Error or protection	Error or protection code	Error or protection code
System check	Refer to Table 4-2.9	Refer to Table 4-2.10

2.5 DIP Switch Settings

The rotating coded switch S3(0-F) on the main control board of hydraulic module is used for setting the modbus address. By default the units have this coded switch positioned=0, but this corresponds to the modbus address 16, while the others positions corresponds the number, e.g. pos=2 is address 2, pos=5 is address 5.

Figure 4-2.9 Rotating switch

Figure 4-2.10: Connection

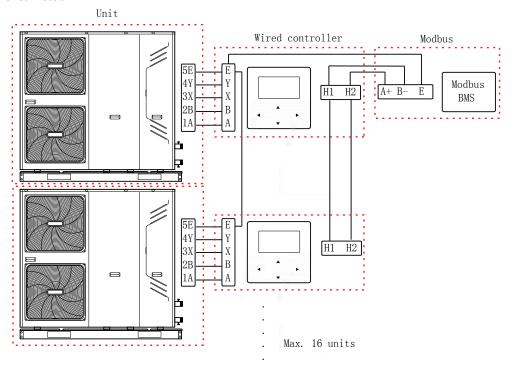
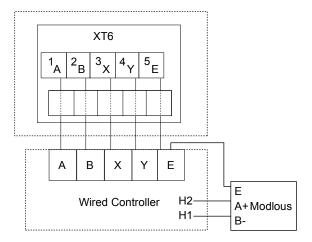



Figure 4-2.11: Wiring

3 Error Code Table

Table 4-3.1: Error code table

Error	Serial			
code	number	Content ¹	Displayed on	Remarks
C7	65	Transducer module temperature too high protect	User interface and refrigerant system main PCB	Contact your local dealer
E0 E8	1 9	Water flow failure	User interface and hydronic system main PCB	
E1	2	Phase sequence error	User interface and refrigerant system main PCB	Only applies to 3-phase models
E2	3	Communication error between outdoor unit and user interface	User interface and hydronic system main PCB	
E3	4	Backup electric heater exchanger water outlet temperature sensor error	User interface and hydronic system main PCB	Sensor T1
E4	5	Domestic hot water tank temperature sensor error	User interface and hydronic system main PCB	Sensor T5
E5	6	Air side heat exchanger refrigerant outlet temperature sensor error	User interface and refrigerant system main PCB	Sensor T3
E6	7	Outdoor ambient temperature sensor error	User interface and refrigerant system main PCB	Sensor T4
E9	10	Suction pipe temperature sensor error	User interface and refrigerant system main PCB	Sensor Th
EA	11	Discharge pipe temperature sensor error	User interface and refrigerant system main PCB	Sensor Tp
Ed	14	Water side heat exchanger water inlet temperature sensor error	User interface and hydronic system main PCB	Sensor Tw_in
EE	15	Hydronic system EEPROM error	User interface and hydronic system main PCB	
F1	116	DC generatrix voltage is too low	User interface and refrigerant system main PCB	
Н0	39	Communication error between refrigerant system main control chip and hydronic system main control chip	User interface, refrigerant system main PCB and hydronic system main PCB	
H1	40	Communication error between refrigerant system main control chip and inverter driver chip	User interface and refrigerant system main PCB	
H2	41	Water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor error	User interface and hydronic system main PCB	Sensor T2
НЗ	42	Water side heat exchanger refrigerant outlet (gas pipe) temperature sensor error	User interface and hydronic system main PCB	Sensor T2B
Н5	44	Room temperature sensor error	User interface and hydronic system main PCB	Sensor Ta
Н6	45	DC fan error	User interface and refrigerant	
HH H7	55 46	Abnormal main circuit voltage	system main PCB User interface and refrigerant	
			system main PCB	

Table 4-3.1: Error code table (continued)

Н8				
110	47	Pressure sensor error	User interface and refrigerant system main PCB	
		Auxiliary heat source water outlet temperature	User interface and hydronic	
Н9	48	sensor error	system main PCB	Sensor T1B
		Water side heat exchanger water outlet	User interface and hydronic	
HA	49	temperature sensor error	system main PCB	Sensor Tw_out
		'	User interface and refrigerant	
HF	54	Refrigerant system EEPROM error	system main PCB	
P0	20		User interface and refrigerant	
НР	57	Low pressure protection	system main PCB	
	•		User interface and refrigerant	
P1	21	High pressure protection	system main PCB	
D 2	22		User interface and refrigerant	
P3	23	Compressor current protection	system main PCB	
			User interface and refrigerant	
P4	24	Discharge temperature protection	system main PCB	
		High temperature difference between water side	Hara takenfara and budanda	
P5 25	heat exchanger water inlet and water outlet	User interface and hydronic		
		temperatures protection	system main PCB	
P6	26			Displayed on user interface
H4	43	Inverter module protection	User interface	when any of LO, L1, L2, L4, L5,
П4				
	43			L7, L8 or L9 occur
LO	-	Inverter module protection	Refrigerant system main PCB	L7, L8 or L9 occur
L0		Inverter module protection DC bus low voltage protection	Refrigerant system main PCB Refrigerant system main PCB	L7, L8 or L9 occur
 +	-			L7, L8 or L9 occur
L1	-	DC bus low voltage protection	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2	-	DC bus low voltage protection DC bus high voltage protection	Refrigerant system main PCB Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4	-	DC bus low voltage protection DC bus high voltage protection MCE error	Refrigerant system main PCB Refrigerant system main PCB Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5	-	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5	-	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error	Refrigerant system main PCB Refrigerant system main PCB Refrigerant system main PCB Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5 L7	-	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5	-	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5 L7 L8	- - - - -	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection Actual compressor frequency differs from target frequency by more than 15Hz protection	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5 L7	-	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection Actual compressor frequency differs from target	Refrigerant system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5 L7 L8 L9	- - - - - - 31	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection Actual compressor frequency differs from target frequency by more than 15Hz protection	Refrigerant system main PCB User interface and hydronic	L7, L8 or L9 occur
L1 L2 L4 L5 L7 L8	- - - - -	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection Actual compressor frequency differs from target frequency by more than 15Hz protection Water side heat exchanger anti-freeze protection	Refrigerant system main PCB User interface and hydronic system main PCB	L7, L8 or L9 occur
L1 L2 L4 L5 L7 L8 L9	- - - - - - 31	DC bus low voltage protection DC bus high voltage protection MCE error Zero speed protection Phase sequence error Compressor frequency variation greater than 15Hz within one second protection Actual compressor frequency differs from target frequency by more than 15Hz protection Water side heat exchanger anti-freeze protection High temperature protection of refrigerant outlet	Refrigerant system main PCB User interface and hydronic system main PCB User interface and refrigerant	L7, L8 or L9 occur

^{1.} Sensor names in this service manual referring to refrigerant flow is named according refrigerant flow during cooling operation refer to Part 2, 3 "Refrigerant Flow Diagrams".

^{2.} When the error code appears, the error code corresponding to the error code can be obtained through the H1H2 port by using the host computer to query the wired controller register.

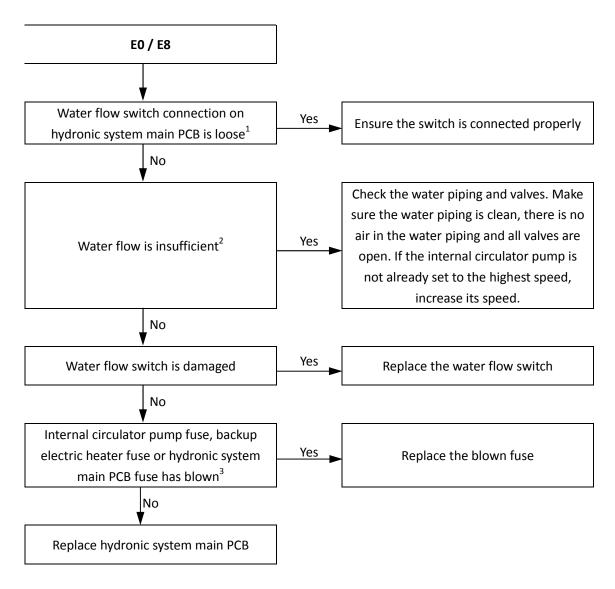
4 Troubleshooting

4.1 Warning

- All electrical work must be carried out by competent and suitably qualified, certified and accredited professionals and in accordance with all applicable legislation (all national, local and other laws, standards, codes, rules, regulations and other legislation that apply in a given situation).
- Power-off the outdoor units before connecting or disconnecting any connections or wiring, otherwise electric shock (which can cause physical injury or death) may occur or damage to components may occur.

4.2 EO, E8 Troubleshooting

4.2.1 Digital display output


4.2.2 Description

- Water flow failure.
- E0 indicates E8 has displayed 3 times. When an E0 error occurs, a manual system restart is required before the system can resume operation.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.2.3 Possible causes

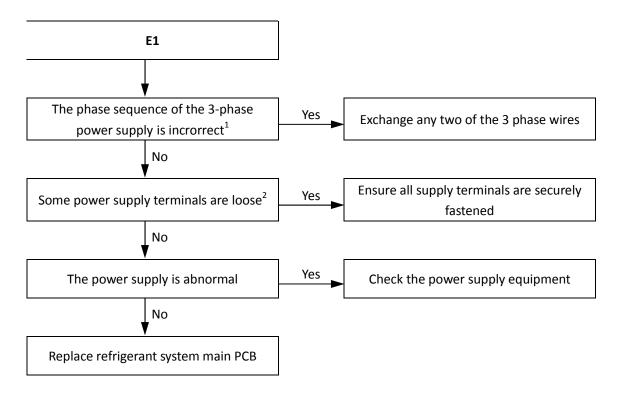
- The wire circuit is short connected or open.
- Water flow rate is too low.
- Water flow switch damaged.

4.2.4 Procedure

- 1. Water flow switch connection is port CN8 on the main PCB for hydronic system (labeled 5 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").
- 2. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figure 2-1.2 and 2-1.6 in Part 2, 1 "Layout of Functional Components".
- 3. The fuse is labeled 25 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System".

4.3 E1 Troubleshooting

4.3.1 Digital display output


4.3.2 Description

- Phase sequence error.
- Only applies to 3-phase models.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.3.3 Possible causes

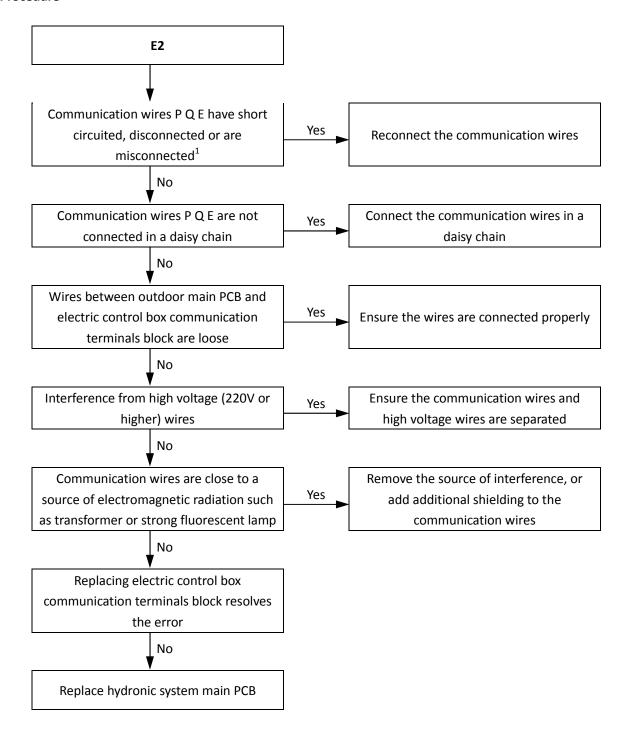
- Power supply phases not connected in correct sequence.
- Power supply terminals loose.
- Power supply abnormal.
- Main PCB damaged.

4.3.4 Procedure

- 1. The A, B, C terminals of 3-phase power supply should match compressor phase sequence requirements. If the phase sequence is inverted, the compressor will operate inversely. If the wiring connection of each outdoor unit is in A, B, C phase sequence, and multiple units are connected, the current difference between C phase and A, B phases will be very large as the power supply load of each outdoor unit will be on C phase. This can easily lead to tripped circuits and terminal wiring burnout. Therefore if multiple units are to be used, the phase sequence should be staggered, so that the current is distributed among the three phases equally.
- 2. Loose power supply terminals can cause the compressors to operate abnormally and compressor current to be very large.

4.4 E2 Troubleshooting

4.4.1 Digital display output

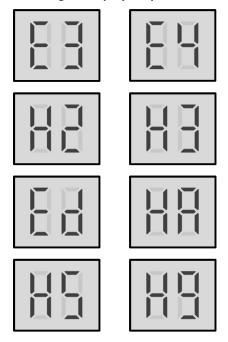

4.4.2 Description

- Communication error between outdoor unit and user interface.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.4.3 Possible causes

- Communication wires between outdoor unit and user interface not connected properly.
- Communication wiring X Y E terminals misconnected.
- Loosened wiring within electric control box.
- Interference from high voltage wires or other sources of electromagnetic radiation.
- Damaged main PCB or electric control box communication terminals block.

4.4.4 Procedure

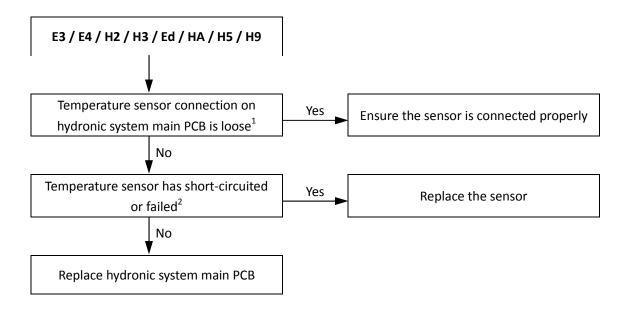


Notes:

1. Measure the resistance among P, Q and E. The normal resistance between P and Q is 120Ω, between P and E is infinite, between Q and E is infinite. Communication wiring has polarity. Ensure that the P wire is connected to P terminals and the Q wire is connected to Q terminals.

4.5 E3, E4, H2, H3, Ed, HA, H5, H9 Troubleshooting

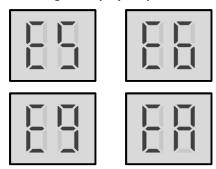
4.5.1 Digital display output


4.5.2 Description

- E3 indicates a backup electric heater water outlet temperature sensor error.
- E4 indicates a domestic hot water tank temperature sensor error.
- H2 indicates a water side heat exchanger refrigerant outlet (liquid pipe) temperature sensor error.
- H3 indicates a water side heat exchanger refrigerant inlet (gas pipe) temperature sensor error.
- Ed indicates a water side heat exchanger water inlet temperature sensor error.
- HA indicates a water side heat exchanger water outlet temperature sensor error.
- H5 indicates a room temperature sensor error.
- H9 indicates an auxiliary heat source water outlet temperature sensor error.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.5.3 Possible causes

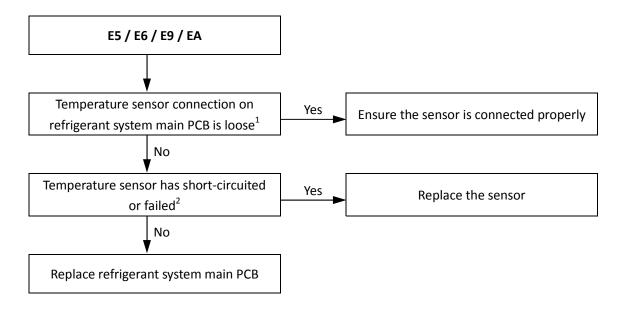
- Temperature sensor not connected properly or has malfunctioned.
- Damaged hydronic system main PCB.


4.5.4 Procedure

- 1. Backup electric heater water outlet temperature sensor, water side heat exchanger refrigerant inlet (liquid pipe) temperature sensor, water side heat exchanger refrigerant outlet (gas pipe) temperature sensor, water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System"). Domestic hot water tank temperature sensor connection is port CN13 on the hydronic system main PCB (labeled 9 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System"). Auxiliary heat source water outlet temperature sensor connection is port CN15 on the hydronic system main PCB (labeled 10 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System"). Room thermostat connection is port CN3 on the hydronic system main PCB (labeled 28 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1 or 4-5.3 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.6 E5, E6, E9, EA Troubleshooting

4.6.1 Digital display output


4.6.2 Description

- E5 indicates an air side heat exchanger refrigerant outlet temperature sensor error
- E6 indicates an outdoor ambient temperature sensor error.
- E9 indicates a suction pipe temperature sensor error.
- EA indicates a discharge temperature sensor error.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.6.3 Possible causes

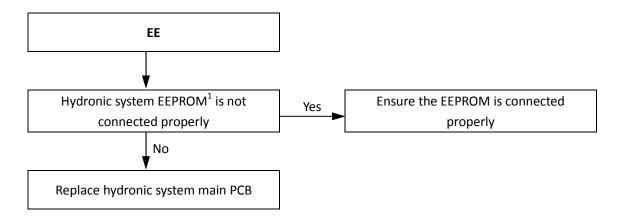
- Temperature sensor not connected properly or has malfunctioned.
- Damaged refrigerant system main PCB.

4.6.4 Procedure

- 1. Air side heat exchanger refrigerant outlet temperature sensor and outdoor ambient temperature sensor connections are port CN9 on the refrigerant system main PCB (labeled 12 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards", (labeled 5 in Figure 4-2.4 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards" and labeled 6 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"). Discharge pipe temperature sensor connection is port CN8 on the refrigerant system main PCBs (labeled 11 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards", (labeled 4 in Figures 4-2.4 in Prat 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"). Suction pipe temperature sensor connection is port CN1 on the refrigerant system main PCB (labeled 13 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), port CN24 on the refrigerant system main PCB (labeled 2 in Figure 4-2.4 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN4 on the main PCB (labeled 4 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN4 on the main PCB (labeled 4 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards")
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Table 4-5.1, and Table 4-5.2 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.7 EE Troubleshooting

4.7.1 Digital display output


4.7.2 Description

- Hydronic system EEPROM error.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.7.3 Possible causes

- Hydronic system main PCB EEPROM is not connected properly.
- Hydronic system main PCB damaged.

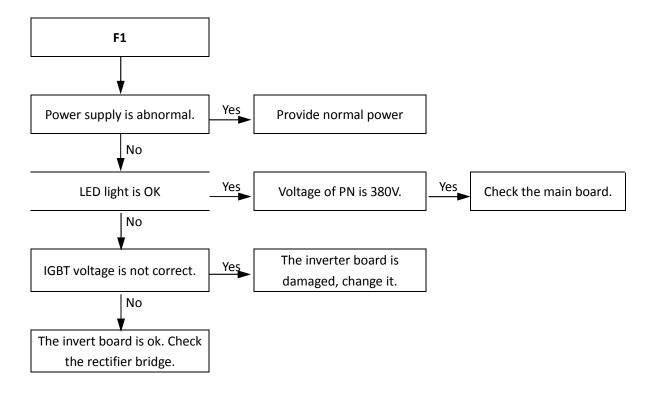
4.7.4 Procedure

Notes:

1. Hydronic system main PCB EEPROM is designated IC18 on the hydronic system main PCB (labeled 29 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").

4.8 F1 Troubleshooting

4.8.1 Digital display output


4.8.2 Description

- Low DC generatrix voltage.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

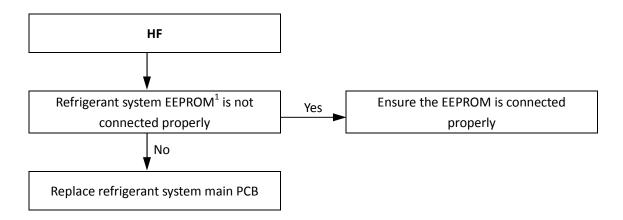
4.8.3 Possible causes

■ The DC generatrix voltage is too low.

4.8.4 Procedure

4.9 HF Troubleshooting

4.9.1 Digital display output


4.9.2 Description

- Refrigerant system EEPROM error.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.9.3 Possible causes

- Refrigerant system main PCB EEPROM is not connected properly.
- Refrigerant system main PCB damaged.

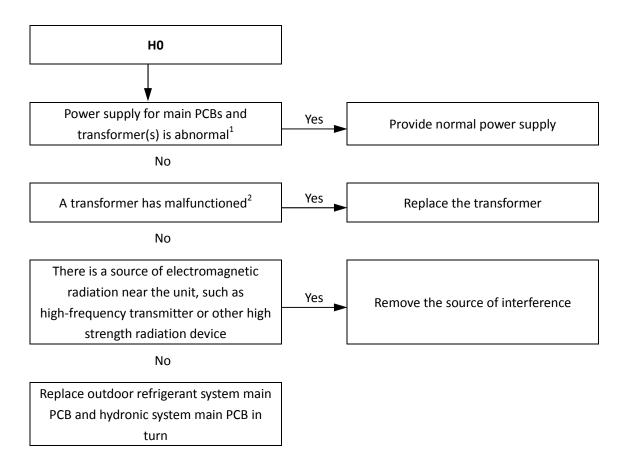
4.9.4 Procedure

Notes:

1. Refrigerant system main PCB EEPROM is designated IC23 on the refrigerant system main PCBs (labeled 29 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), designed IC13 on the refrigerant system main PCBs (labeled 19 in Figure 4-2.4 in Part 4, 2.2 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), designed IC23 on the refrigerant system main PCBs (labeled 26 in Figure 4-2.6 in Part 4, 2.2 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").

4.10 H0 Troubleshooting

4.10.1 Digital display output


4.10.2 Description

- Communication error between refrigerant system main control chip and hydronic system main control chip.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB, refrigerant system main PCB and user interface.

4.10.3 Possible causes

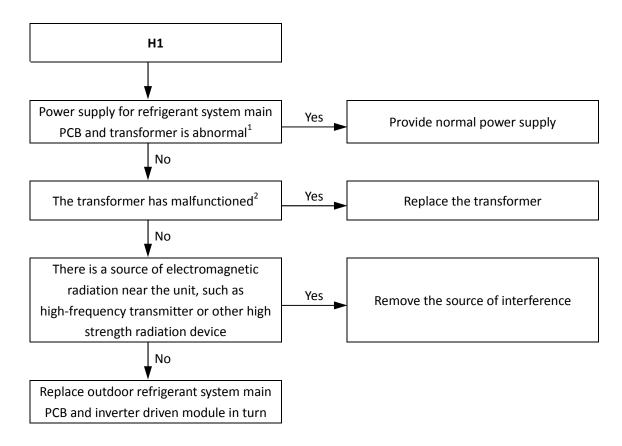
- Power supply abnormal.
- Transformer malfunction.
- Interference from a source of electromagnetic radiation.
- Refrigerant system main PCB or hydronic system main PCB damaged.

4.10.4 Procedure

- 1. Measure the voltages of transformer(s) input port and on the main PCB. The normal voltage between transformer input port terminals is 220V, between GND and 18V is 18V. If one or more of the voltages are not normal, the power supply for main PCB and transformer is abnormal.
- 2. Measure the voltages of transformer(s) output ports. If the voltages are not normal, the transformer has malfunctioned.

4.11 H1 Troubleshooting

4.11.1 Digital display output


4.11.2 Description

- Communication error between refrigerant system main control chip and the inverter driver chip.
- WSAN-YMi stops running.
- Error code H1 is displayed on refrigerant system main PCB and user interface.

4.11.3 Possible causes

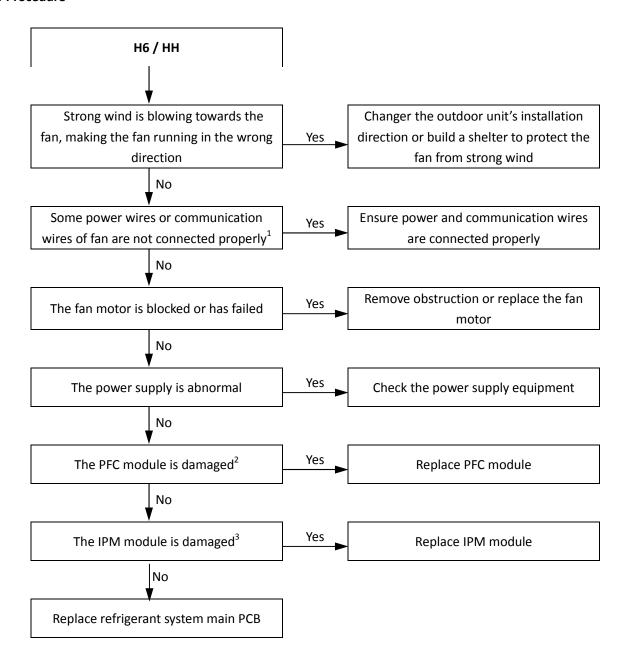
- Power supply abnormal.
- Transformer malfunction.
- Interference from a source of electromagnetic radiation.
- Refrigerant system main PCB or inverter driven module damaged.

4.11.4 Procedure

- 1. Measure the voltages of transformer input port and on the main PCB. The normal voltage between transformer input port terminals is 220V, output two sets of voltages 11V and 17V. If one or more of the voltages are not normal, the power supply for main PCB and transformer is abnormal.
- 2. Measure the voltages of transformer output ports. If the voltages are not normal, the transformer has malfunctioned.

4.12 H6, HH Troubleshooting

4.12.1 Digital display output


4.12.2 Description

- H6 indicates a DC fan error.
- HH indicates that H6 protection has occurred 10 times in 2 hours. When an HH error occurs, a manual system restart is required before the system can resume operation. The cause of an HH error should be addressed promptly in order to avoid system damage.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.12.3 Possible causes

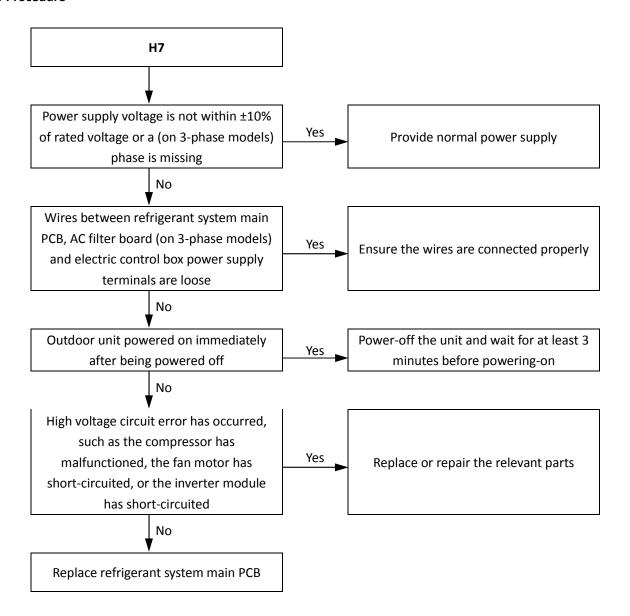
- Power or communication wires not connected properly.
- High wind speed.
- Fan motor blocked or has failed.
- Power supply abnormal.
- PFC module damaged.
- IPM module damaged.
- Main PCB damaged.

4.12.4 Procedure

- 1. Refer to Figures 4-1.1 to 4-1.7 in Part 4, 1 "Outdoor Unit Electric Control Box Layout" and to the WSAN-YMi Engineering Data Book, Part 2, 5 "Wiring Diagrams".
- 2. Only applies to single-phase power supply models. Check the voltage between "+" and "-" terminals on the PFC module on the inverter module. The normal range is 277V to 354V. If the voltage is outside this range, the PFC module is damaged.
- 3. Measure the voltage between the DC fan motor power supply's white and black wires. The normal voltage is 15V when the unit is in standby. If the voltage is significantly different from 15V, the IPM module on the inverter module is damaged. The fan connections on each type of refrigerant system main PCB are labelled in Figures 4-2.2, 4-2.4 and 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards".

4.13 H7 Troubleshooting

4.13.1 Digital display output


4.13.2 Description

- Abnormal main circuit voltage.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

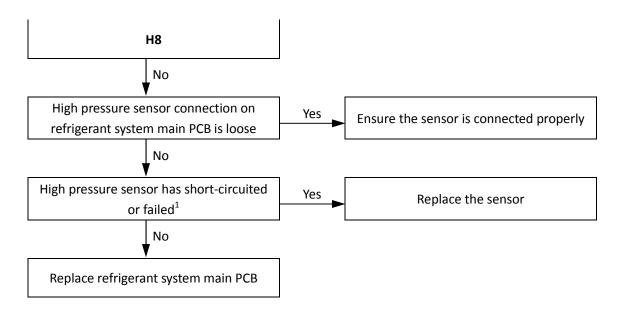
4.13.3 Possible causes

- Power supply voltage not within ±10% of rated voltage or a phase is missing.
- Outdoor unit powered on immediately after being powered off.
- Loosened wiring within electric control box.
- High voltage circuit error.
- Main PCB damaged.

4.13.4 Procedure

4.14 H8 Troubleshooting

4.14.1 Digital display output


4.14.2 Description

- Pressure sensor error.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.14.3 Possible causes

- Pressure sensor not connected properly or has malfunctioned.
- Refrigerant system main PCB damaged.

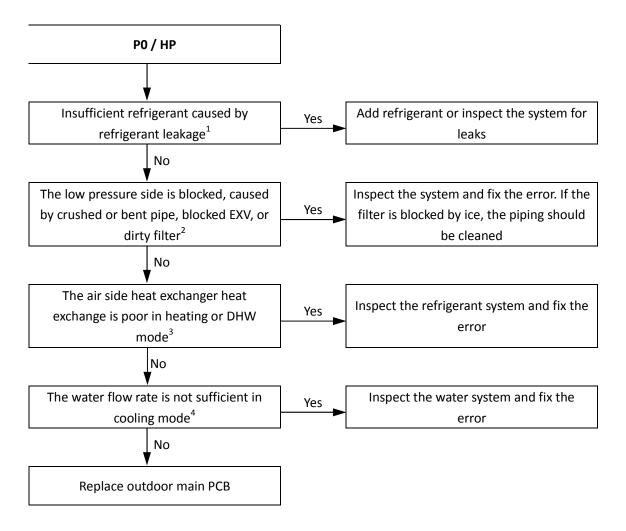
4.14.4 Procedure

Notes:

1. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed. The pressure sensor connection on each type of refrigerant system main PCB is labelled in Figures 4-2.2, 4-2.4 and 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards". Refer also to Part 2, 1 "Layout of Functional Components".

4.15 PO, HP Troubleshooting

4.15.1 Digital display output


4.15.2 Description

- P0 indicates suction pipe low pressure protection. When the suction pressure falls below 0.14MPa, the system displays P0 protection and WSAN-YMi stops running. When the pressure rises above 0.30MPa, P0 is removed and normal operation resumes.
- HP indicates P0 protection has occurred 3 times in 60 minutes. When an HP error occurs, a manual system restart is required before the system can resume operation.
- Error code is displayed on refrigerant system main PCB and user interface.

4.15.3 Possible causes

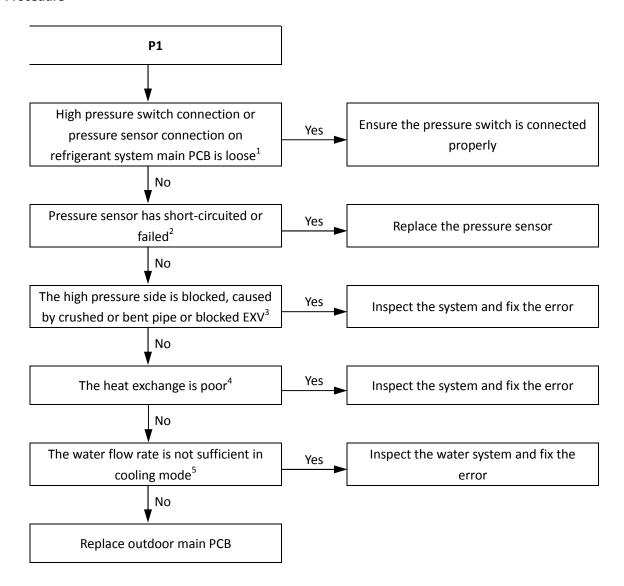
- Low pressure switch not connected properly or has malfunctioned.
- Insufficient refrigerant.
- Low pressure side blockage.
- Poor evaporator heat exchange in heating mode or DHW mode.
- Insufficient water flow in cooling mode.
- Main PCB damaged.

4.15.4 Procedure

- 1. To check for insufficient refrigerant:
 - An insufficiency of refrigerant causes compressor discharge temperature to be higher than normal, discharge and suction pressures to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. These issues disappear once sufficient refrigerant has been charged into the system.
- 2. A low pressure side blockage causes compressor discharge temperature to be higher than normal, suction pressure to be lower than normal and compressor current to be lower than normal, and may cause frosting to occur on the suction pipe. For normal system parameters.
- 3. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 4. Check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

4.16 P1 Troubleshooting

4.16.1 Digital display output


4.16.2 Description

- Discharge pipe high pressure protection. When the discharge pressure rises above 4.2MPa, the system displays P1 protection and WSAN-YMi stops running. When the discharge pressure falls below 3.2MPa, P1 is removed and normal operation resumes.
- Error code is displayed on refrigerant system main PCB and user interface.

4.16.3 Possible causes

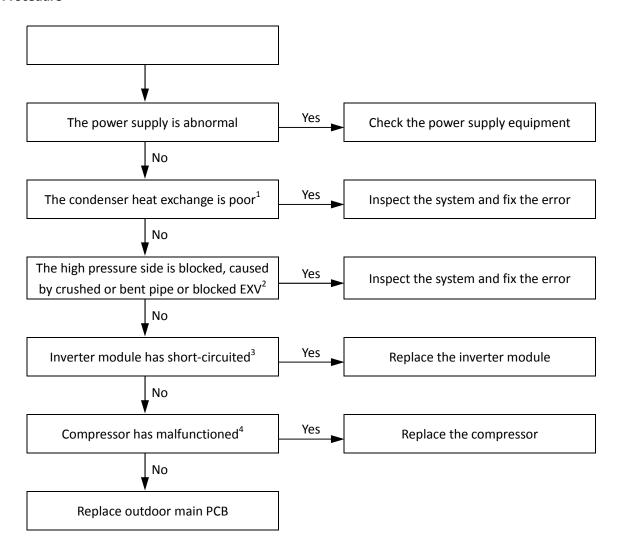
- Pressure sensor/switch not connected properly or has malfunctioned.
- Excess refrigerant.
- System contains air or nitrogen.
- High pressure side blockage.
- Poor condenser heat exchange.
- Main PCB damaged.

4.16.4 Procedure

- 1. High pressure switch connection is port CN13 on the main PCB (labeled 10 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), port CN9 on the invert module PCB (labeled 2 in Figure 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN9 on the invert module PCB (labeled 8 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"). Pressure sensor connection is port CN14 on the main PCB (labeled 15 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), port CN28 on the main PCB (labeled 3 in Figure 2.4 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN36 on the main PCB (labeled 3 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").
- 2. Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 3. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 4. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 5. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figure 2-1.2 and 2-1.6 in Part 2, 1 "Layout of Functional Components".

4.17 P3 Troubleshooting

4.17.1 Digital display output


4.17.2 Description

- Compressor current protection.
- When the compressor current rises above the protection value (Single phase 5/7/9kW models 20A, single phase 12 to 16kW models 31A, three phase models 15A), the system displays P3 protection and WSAN-YMistops running. When the current returns to the normal range, P3 is removed and normal operation resumes.
- Error code is displayed on refrigerant system main PCB and user interface.

4.17.3 Possible causes

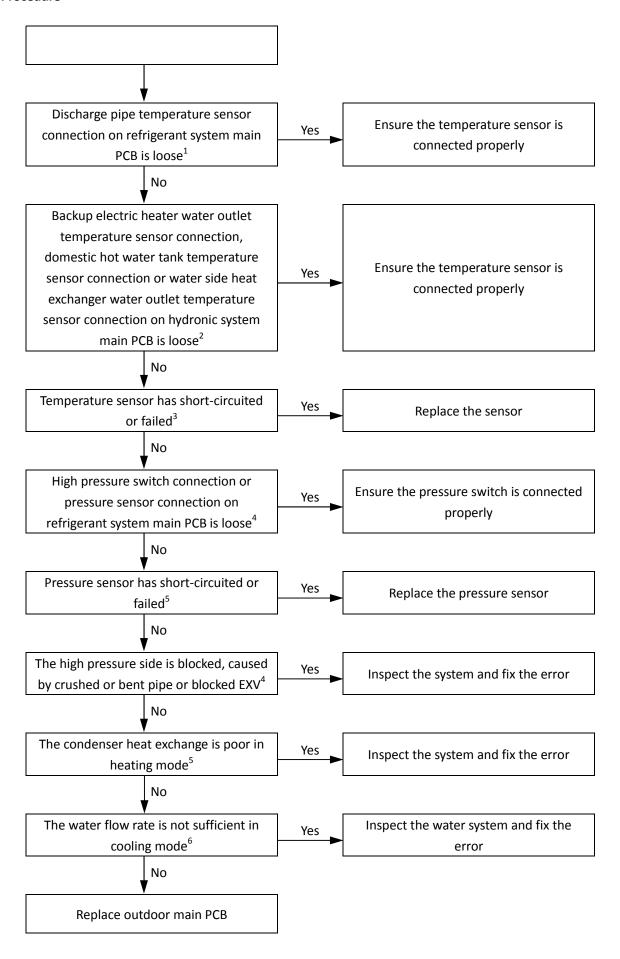
- Power supply abnormal.
- Poor condenser heat exchange.
- High pressure side blockage.
- Inverter module damaged.
- Compressor damaged.
- Main PCB damaged.

4.17.4 Procedure

- 1. In heating mode check water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages. In cooling mode check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 2. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 3. Set a multi-meter to buzzer mode and test any two terminals of P N and U V W of the inverter module. If the buzzer sounds, the inverter module has short-circuited.
- 4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.

4.18 P4 Troubleshooting

4.18.1 Digital display output


4.18.2 Description

- Discharge temperature protection.
- When the compressor the discharge temperature rises above 115°C, the system displays P4 protection and M-Thermal Mono stops running. When the discharge temperature falls below 90°C, P4 is removed and normal operation resumes.
- Error code is displayed on refrigerant system main PCB and user interface.

4.18.3 Possible causes

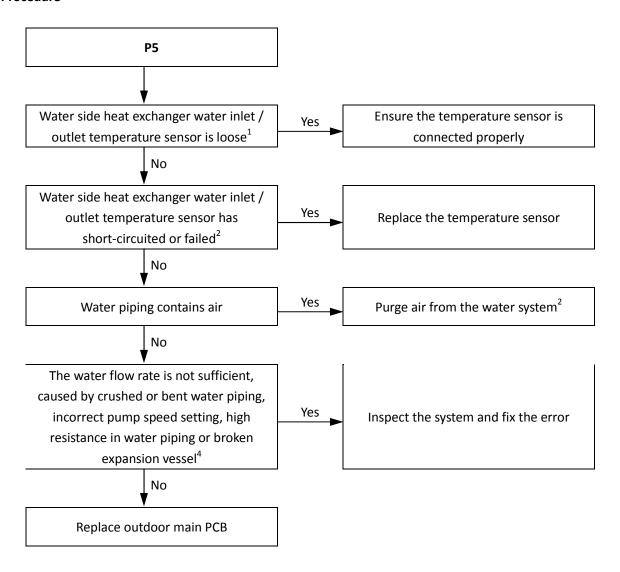
- Temperature sensor error
- High pressure side blockage.
- Poor condenser heat exchange.
- Main PCB damaged.

4.18.4 Procedure

- 1. Discharge pipe temperature sensor connection is port CN8 on the refrigerant system main PCBs (labeled 11 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards", (labeled 4 in Figures 4-2.4 in Prat 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards" and labelled 5 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").
- 2. Backup electric heater water outlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System"). Domestic hot water tank temperature sensor connection is port CN13 on the hydronic system main PCB (labeled 9 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").
- 3. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 5-5.1 or 5-5.2 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".
- 4. High pressure switch connection is port CN13 on the main PCB (labeled 10 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), port CN9 on the invert module PCB (labeled 2 in Figure 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN9 on the invert module PCB (labeled 8 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"). Pressure sensor connection is port CN4 on the main PCB (labeled 15 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards"), port CN28 on the main PCB (labeled 3 in Figure 4-2.4 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards") and port CN36 on the main PCB (labeled 3 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").
- Measure the resistance among the three terminals of the pressure sensor. If the resistance is of the order of mega Ohms or infinite, the pressure sensor has failed.
- 6. High pressure side blockage causes discharge temperature to be higher than normal, discharge pressure to be higher than normal and suction pressure to be lower than normal.
- 7. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.
- 8. Check the water side heat exchanger, water piping, circulator pumps and water flow switch for dirt/blockages.

4.19 P5 Troubleshooting

4.19.1 Digital display output


4.19.2 Description

- High temperature difference between water side heat exchanger water inlet and water outlet temperatures protection.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.19.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- Water piping contains air.
- Insufficient water flow.
- Hydronic system main PCB damaged.

4.19.4 Procedure

- 1. Water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 5-5.3 in Part 5, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Refer to the WSAN-YMi Engineering Data Book, Part 5, 15 "SPECIAL FUNCTIONS".
- 4. Check water pressure on the manometer. If the water pressure is not > 1 bar, water flow is insufficient. Refer to Figures 2-1.2 and 2-1.6 in Part 2, 1 "Layout of Functional Components".

4.20 P6 Troubleshooting for single-phase

models 4.20.1 Digital display output

4.20.2 Description

- Inverter module protection.
- WSAN-YMi stops running.
- Error code P6 is displayed on the user interface. Specific error code L0, L1, L2, L4, L5, L7, L8 or L9 is displayed on the refrigerant system main PCB.

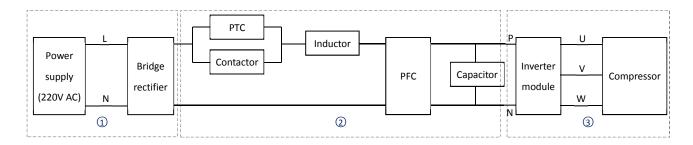
4.20.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection.
- Phase sequence error.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.

4.20.4 Specific error codes for P6 inverter module protection

If a P6 error code is displayed on the user interface, one of the following specific error codes is displayed on the refrigerant system main PCB: L0, L1, L2, L4, L5, L7, L8, L9. Refer to Table 4-4.1.

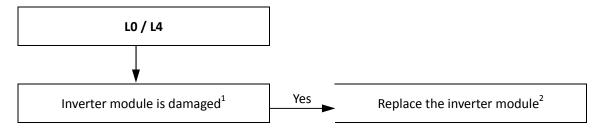
Table 4-4.1: Specific error codes for error P6


Specific error code	Content
LO	Inverter module protection
L1	DC bus low voltage protection
L2	DC bus high voltage protection
L4	MCE error
L5	Zero speed protection
L7	Phase sequence error
L8	Compressor frequency variation greater than 15Hz within one second protection
L9	Actual compressor frequency differs from target frequency by more than 15Hz protection

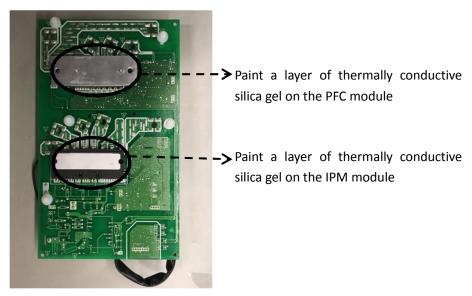
The specific error codes can also be obtained from the LED indicators LED1/LED2 on the inverter module. Refer to Table 4-4.2 and Figure 4-2.3 or 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Module and Filter Boards".

Table 4-4.2: Errors indicated on LED1/2

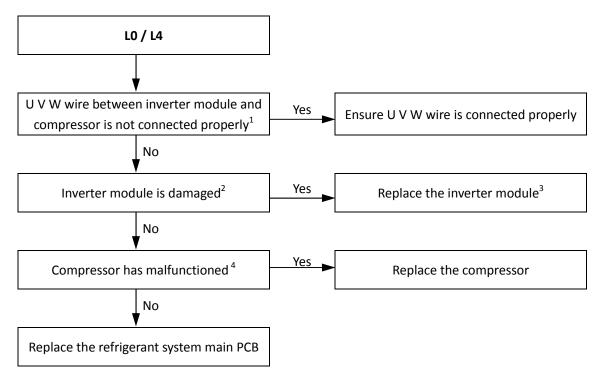
LED1/2 flashing pattern	Corresponding error		
Flashes 8 times and stops for 1 second, then repeats	L0 - Inverter module protection		
Flashes 9 times and stops for 1 second, then repeats	L1 - DC bus low voltage protection		
Flashes 10 times and stops for 1 second, then repeats	L2 - DC bus high voltage protection		
Flashes 12 times and stops for 1 second, then repeats	L4 - MCE error		
Flashes 13 times and stops for 1 second, then repeats	L5 - Zero speed protection		
Flashes 15 times and stops for 1 second, then repeats	L7 - Phase sequence error		
Flacker 16 times and stone for 1 second than reports	L8 - Compressor frequency variation greater than		
Flashes 16 times and stops for 1 second, then repeats	15Hz within one second protection		
Flacker 17 times and stone for 1 second than reports	L9 - Actual compressor frequency differs from		
Flashes 17 times and stops for 1 second, then repeats	target frequency by more than 15Hz protection		


4.20.5 Principle of DC inverter

- 1 220V AC power supply change to DC power supply after bridge rectifier.
- 2 Contactor is open, the current across the PTC to charge capacitor, after 5 seconds the contactor closed.
- (3) The capacitor output steady power supply for inverter module P N terminals. In standby the voltage between P and N terminal on inverter module is 310V DC. When the fan motor is running, the voltage between P and N terminal on inverter module is 380V DC.

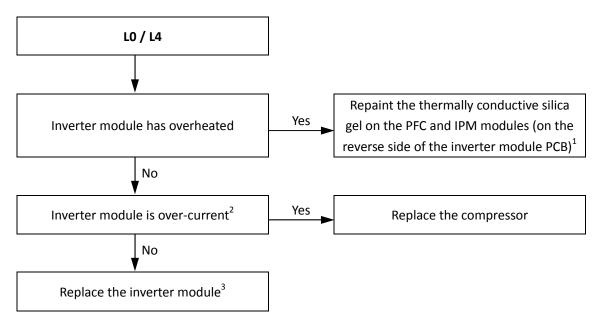

4.20.6 LO/L4 troubleshooting

Situation 1: L0 or L4 error appears immediately after the outdoor unit is powered-on



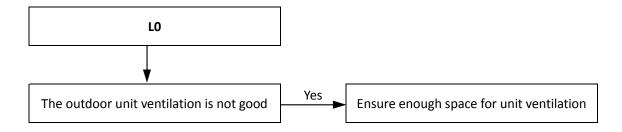
- 1. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.3 or 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Module and Filter Boards".
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Figure 4-4.1: Replacing an inverter module



Situation 2: L0 or L4 error appears immediately after the compressor starts up

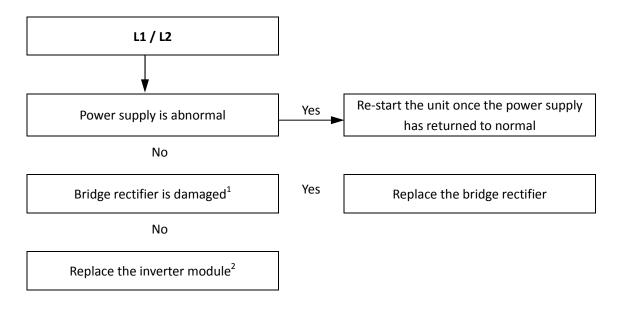
- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.3 or 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Module and Filter Boards".
- 3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.
- 4. The normal resistances of the inverter compressor are 0.7-1.5Ω among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.


Situation 3: L0 or L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

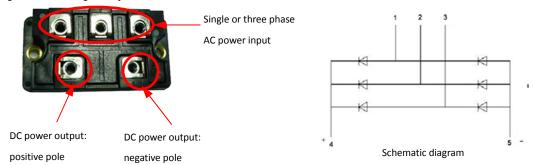
- 1. Refer to Figure 4-4.1.
- 2. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor is failed.
- 3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Situation 4: LO error appears occasionally/irregularly

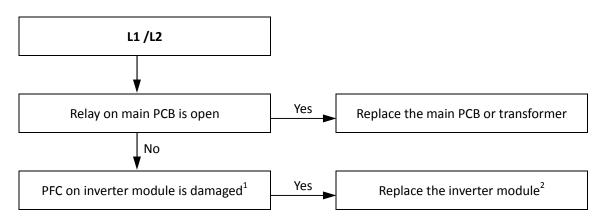

4.20.7 L1/L2 troubleshooting

The normal DC voltage between terminals P and N on inverter module is 310V in standby and 380V when the fan motor is running. If the voltage is lower or higher than the normal voltage, the unit displays an L1 or L2 error.

Figure 4-4.2: Inverter module terminals



Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on



- 1. Check the bridge rectifier using one of the following two methods (refer to Figure 4-4.3):
 - Method 1: measure the resistance between any two of the 5 bridge rectifier terminals. If any of the resistances is close to zero, the bridge rectifier
 has failed.
 - Method 2: dial a multimeter to the diode setting:
 - Put the red probe on the DC power output negative terminal (terminal 5) and put the black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 5 and each of terminals 1, 2 and 3 should be around 0.378V. If the voltage is 0, the bridge rectifier has failed.
 - Put the red probe on the DC power output positive terminal (terminal 4), then put black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 4 and each of terminals 1, 2 and 3 should be infinite. If the voltage is 0, the bridge rectifier has failed.
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

Figure 4-4.3: Bridge rectifier

Situation 2: L1 or L2 error appears after the compressor has been running for a period of time and the compressor speed is over 20rps

- 1. If the fan motor is running and the DC voltage between terminals P and N on inverter module is not 380V, the PFC is damaged.
- 2. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the PFC and IPM modules (on the reverse side of the inverter module PCB). Refer to Figure 4-4.1.

4.21 P6 Troubleshooting for three-phase models

4.21.1 Digital display output

4.21.2 Description

- Inverter module protection.
- WSAN-YMi stops running.
- Error code P6 is displayed on the user interface. Specific error code L0, L1, L2, L4, L5, L7, L8 or L9 is displayed on the refrigerant system main PCB.

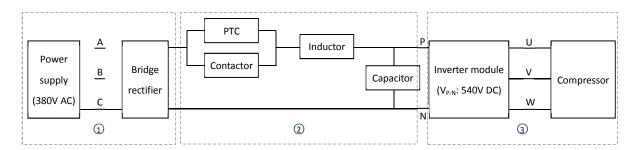
4.21.3 Possible causes

- Inverter module protection.
- DC bus low or high voltage protection.
- MCE error.
- Zero speed protection.
- Phase sequence error.
- Excessive compressor frequency variation.
- Actual compressor frequency differs from target frequency.

4.21.4 Specific error codes for P6 inverter module protection

If a P6 error code is displayed on the user interface, one of the following specific error codes is displayed on the refrigerant system main PCB: L0, L1, L2, L4, L5, L7, L8, L9. Refer to Table 4-4.3.

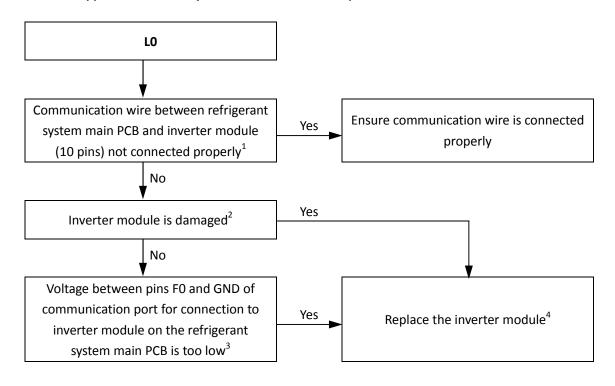
Table 4-4.3: Specific error codes for error P6


Specific error code	Content
LO	Inverter module protection
L1	DC bus low voltage protection
L2	DC bus high voltage protection
L4	MCE error
L5	Zero speed protection
L7	Phase sequence error
L8	Compressor frequency variation greater than 15Hz within one second protection
L9	Actual compressor frequency differs from target frequency by more than 15Hz protection

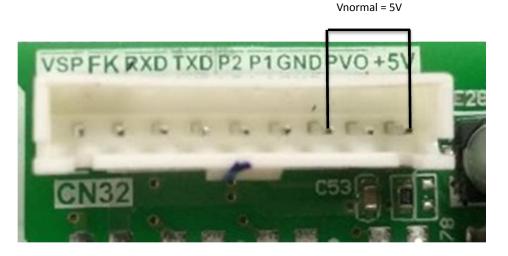
The specific error codes can also be obtained from the LED indicators LED1/LED2 on the refrigerant system main PCB. Refer to Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Module and Filter Boards".

Table 4-4.4: Errors indicated on LED1/2

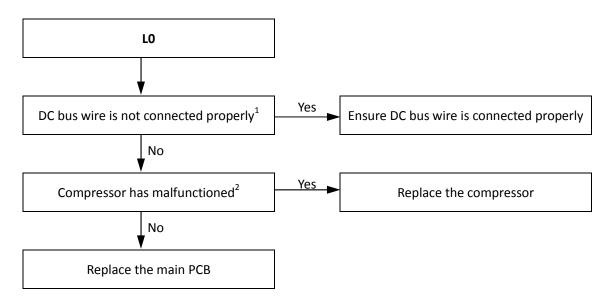
LED1/2 flashing pattern	Corresponding error		
Flashes 8 times and stops for 1 second, then repeats	L0 - Inverter module protection		
Flashes 9 times and stops for 1 second, then repeats	L1 - DC bus low voltage protection		
Flashes 10 times and stops for 1 second, then repeats	L2 - DC bus high voltage protection		
Flashes 12 times and stops for 1 second, then repeats	L4 - MCE error		
Flashes 13 times and stops for 1 second, then repeats	L5 - Zero speed protection		
Flashes 15 times and stops for 1 second, then repeats	L7 - Phase sequence error		
Florings 16 times and stone for 1 second then repeats	L8 - Compressor frequency variation greater tha		
Flashes 16 times and stops for 1 second, then repeats	15Hz within one second protection		
Florings 17 times and stone for 1 second then reports	L9 - Actual compressor frequency differs from		
Flashes 17 times and stops for 1 second, then repeats	target frequency by more than 15Hz protection		


4.21.5 Principle of DC inverter

- ① 380-415V AC power supply change to DC power supply after bridge rectifier.
- 2 Contactor is open the current across the PTC to charge capacitor, after 5 seconds the contactor closed.
- 3 The capacitor output steady 540V DC power supply for inverter module P N terminals.


4.21.6 LO troubleshooting

Situation 1: LO error appears immediately after the outdoor unit is powered-on



- 1. For 21 -41, the communication port between refrigerant system main PCB and inverter module is port CN17 on refrigerant system main PCB and port CN32 on inverter module. For 61 81, the communication port between refrigerant system main PCB and inverter module is port CN6 on refrigerant system main PCB and port CN1 on inverter module. For 61 81, the communication port between refrigerant system main PCB and inverter module is port CN201 on refrigerant system main PCB and port CN1 on inverter module.
- 2. Measure the resistance between each of U, V and W and each of P and N on the inverter module. All the resistances should be infinite. If any of them are not infinite, the inverter module is damaged and should be replaced. Refer to Figure 4-2.3 or 4-2.5 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Module and Filter Boards".
- 3. The normal voltage between F0 and GND is 5V. Refer to Figure 4-4.4.
- 4. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).

Figure 4-4.4: F0 and GND voltage on CN201

Situation 2: LO error appears immediately after the compressor starts up

Notes:

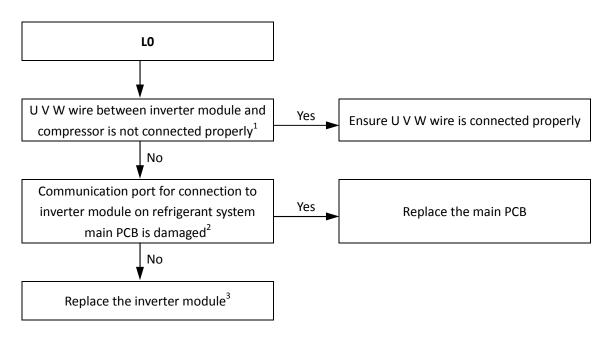
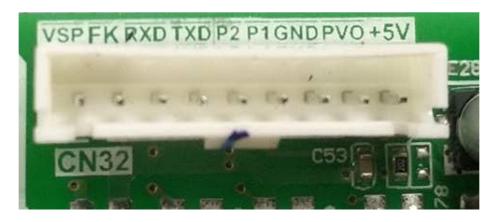

1. The DC bus wire should run from the N terminal on the inverter module, through the current sensor (in the direction indicated by the arrow on the current sensor), and end at the N terminal of capacitor. Refer to Figure 4-4.5.

Figure 4-4.5: DC bus wire connection N terminal on inverter module Current sensor N terminal of capacitor

The normal resistances of the inverter compressor are $0.7-1.5\Omega$ among U V W and infinite between each of U V W and ground. If any of the resistances differ from these specifications, the compressor has malfunctioned.


Situation 3: L0 error appears within 2 seconds of compressor start-up

Notes:

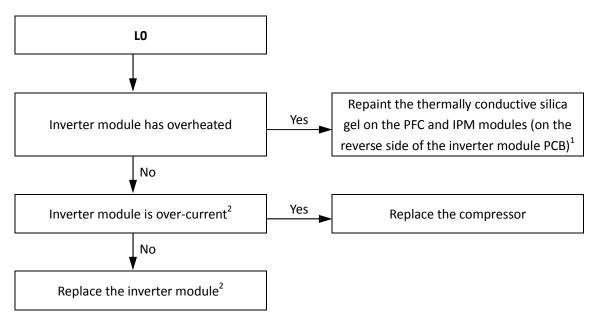
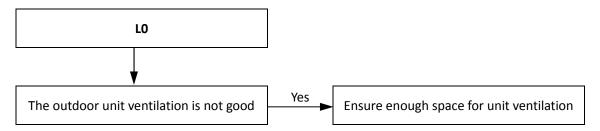

- 1. Connect the U V W wire from the inverter module to the correct compressor terminals, as indicated by the labels on the compressor.
- 2. Measure the voltage between each of W-, W+, V-, V+, U-, U+ and GND when the unit is in standby. The normal voltage should be 2.5V-4V and the six voltages should be same, otherwise the communication terminal has failed. Refer to Figure 4-4.6.

Figure 4-4.6: Connection port for inverter module

3. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).


Condition 4: L0 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

- 1. When replacing an inverter module, a layer of thermally conductive silica gel should be painted on the IPM module (on the reverse side of the inverter module PCB).
- 2. Use clip-on ammeter to measure the compressor current, if the current is normal indicates the inverter module is failed, if the current is abnormal indicates the compressor has failed.

Situation 5: L0 error appears occasionally/irregularly

4.21.7 L1/L2 troubleshooting

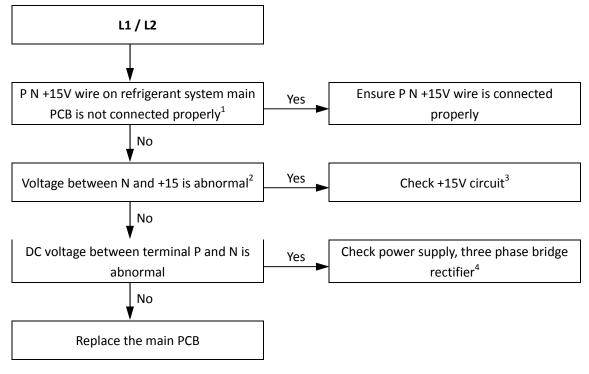
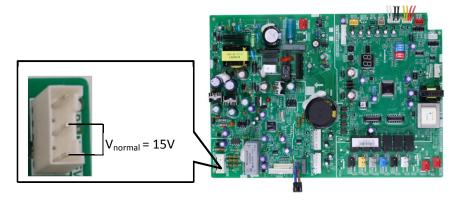

The normal DC voltage between terminals P and N on inverter module is 540V. If the voltage is lower than 300V, the unit displays an L1 error; if the voltage is higher than 800V, the unit displays an L2 error. Refer to Figure 4-4.7.

Figure 4-4.7: P, N terminals voltage


 $V_{normal} = 540V DC$

Situation 1: L1 or L2 error appears immediately after the outdoor unit is powered-on

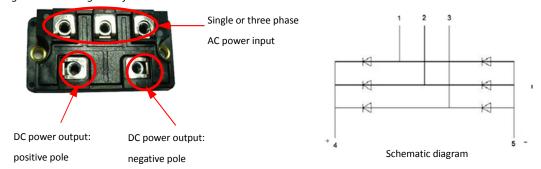
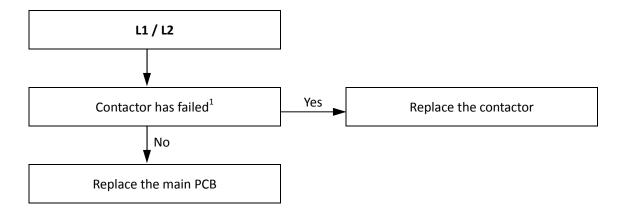

- 1. P N +15V terminal on refrigerant system main PCB. Refer to Figure 4-4.7.
- 2. Voltage between N and +15. Refer to Figure 4-4.8

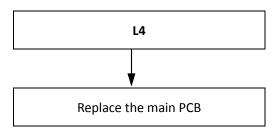
Figure 4-4.8: P N +15V terminal



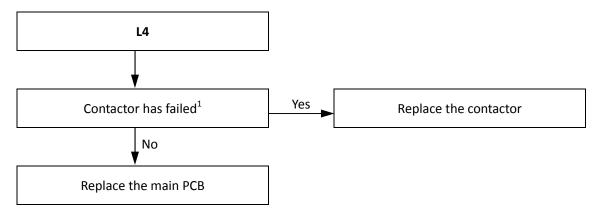
- 3. Check the +15V circuit according to corresponding wiring diagram. If CN5 on inverter module output voltage is not +15V means the inverter module is failed. If voltage output of inverter module is +15V means main PCB is failed.
- 4. Check the bridge rectifier using one of the following two methods (refer to Figure 4-4.9):
 - Method 1: measure the resistance between any two of the 5 bridge rectifier terminals. If any of the resistances is close to zero, the bridge rectifier
 has failed.
 - Method 2: dial a multimeter to the diode setting:
 - Put the red probe on the DC power output negative terminal (terminal 5) and put the black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 5 and each of terminals 1, 2 and 3 should be around 0.378V. If the voltage is 0, the bridge rectifier has failed.
 - Put the red probe on the DC power output positive terminal (terminal 4), then put black probe onto each of the AC power input terminals (terminals 1, 2 and 3) in turn. The voltage between terminal 4 and each of terminals 1, 2 and 3 should be infinite. If the voltage is 0, the bridge rectifier has failed.

Figure 4-4.9: Bridge rectifier

Situation 2: L1 or L2 error appears after the compressor has been running for a period of time and the compressor speed is 20 - 30 rps

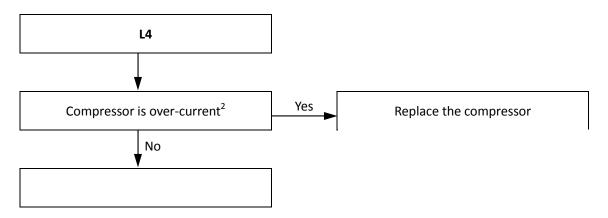


Notes:


1. Check the voltage between the two wires which connect the contactor with the refrigerant system main PCB. If the voltage is 220V AC and the contactor is open, the contactor has failed.

4.21.8 L4 troubleshooting

Situation 1: L4 error appears immediately after the outdoor unit is powered-on


Situation 2: L4 error appears after the compressor has been running for a period of time and the compressor speed is 20 - 30 rps

Notes:

Check the voltage between the two wires which connect the contactor with the refrigerant system main PCB. If the voltage is 220V AC and the contactor is
open, the contactor has failed.

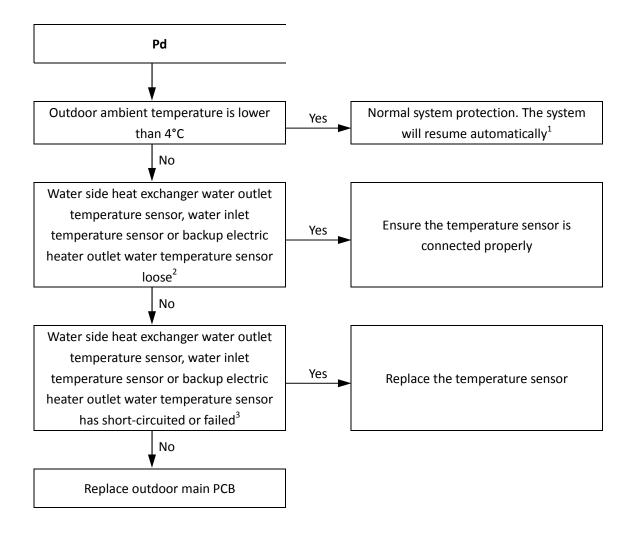
Condition 3: L4 error appears after the compressor has been running for a period of time and the compressor speed is over 60rps

Notes:

 Re-start the unit, use clip-on ammeter to measure the compressor current, if the current is normal indicates the compressor is failed, if the current is abnormal indicates the main PCB is failed.

4.22 Pb Troubleshooting

4.22.1 Digital display output


4.22.2 Description

- Water side heat exchanger anti-freeze protection.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and ANTI.FREEZE icon is displayed on user interface.

4.22.3 Possible causes

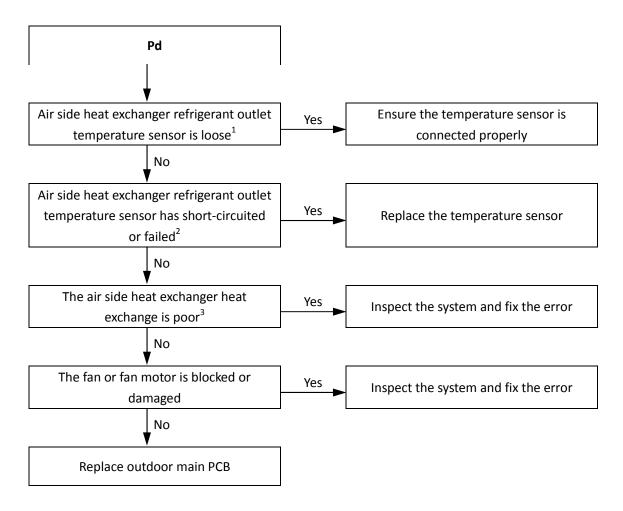
- Normal system protection.
- Temperature sensor not connected properly or has malfunctioned.
- Hydronic system main PCB damaged.

4.22.4 Procedure

- 1. Refer to Part 3, 5.7 "Water Side Heat Exchanger Anti-freeze Protection Control".
- 2. Backup electric heater water outlet temperature sensor, water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Main PCB for Hydronic System").
- 3. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 4-5.3 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".

4.23 Pd Troubleshooting

4.23.1 Digital display output


4.23.2 Description

- High temperature protection of air side heat exchanger refrigerant outlet in cooling mode. When the air side heat exchanger refrigerant outlet temperature is higher than 62°C for more than 3 seconds, the system displays Pd protection and WSAN-YMi stops running. When the air side heat exchanger refrigerant outlet temperature returns drops below 52°C, Pd is removed and normal operation resumes.
- WSAN-YMi stops running.
- Error code is displayed on refrigerant system main PCB and user interface.

4.23.3 Possible causes

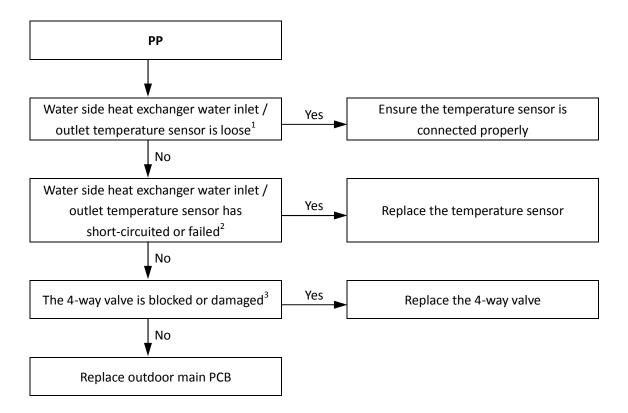
- Temperature sensor not connected properly or has malfunctioned.
- Poor condenser heat exchange.
- Fan motor damaged.
- Hydronic system main PCB damaged.

4.23.4 Procedure

- 1. Air side heat exchanger refrigerant outlet temperature sensor and outdoor ambient temperature sensor connections are port CN9 on the refrigerant system main PCB (labeled 12 in Figure 4-2.2 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards", (labeled 5 in Figure 4-2.4 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards" and labeled 6 in Figure 4-2.6 in Part 4, 2.3 "Main PCBs for Refrigerant System, Inverter Modules and Filter Boards").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 4-5.1 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Check air side heat exchanger, fan(s) and air outlets for dirt/blockages.

4.24 PP Troubleshooting

4.24.1 Digital display output


4.24.2 Description

- Water side heat exchanger inlet temperature is higher than outlet temperature in heating mode.
- WSAN-YMi stops running.
- Error code is displayed on hydronic system main PCB and user interface.

4.24.3 Possible causes

- Temperature sensor not connected properly or has malfunctioned.
- 4-way valve is blocked or damaged.
- Hydronic system main PCB damaged.

4.24.4 Procedure

- 1. Water side heat exchanger water inlet temperature sensor and water side heat exchanger water outlet temperature sensor connections are port CN6 on the hydronic system main PCB (labeled 8 in Figure 4-2.1 in Part 4, 2.2 "Min PCB for Hydronic System").
- 2. Measure sensor resistance. If the resistance is too low, the sensor has short-circuited. If the resistance is not consistent with the sensor's resistance characteristics table, the sensor has failed. Refer to Part 2, 1 "Layout of Functional Components" and to Table 4-5.1 to 4-5.2 in Part 4, 5.1 "Temperature Sensor Resistance Characteristics".
- 3. Restart the unit in cooling mode to change the refrigerant flow direction. If the unit does not operate normally, the 4-way valve is blocked or damaged.

5 Appendix to Part 4

5.1 Temperature Sensor Resistance Characteristics

Table 4-5.1: Outdoor ambient temperature sensor, water side heat exchanger refrigerant inlet / outlet (liquid / gas pipe) temperature sensor, air side heat exchanger refrigerant out temperature sensor and suction pipe temperature sensor resistance characteristics

Temperature

(°C)

95

96 97

98

99

100

101

102

103

104

105

Resistance

(kΩ)

0.708

0.666

0.646

0.627

0.609

0.591

0.574

0.558

0.542

0.527

Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-25	144.266	15	16.079	55	2.841
-24	135.601	16	15.313	56	2.734
-23	127.507	17	14.588	57	2.632
-22	119.941	18	13.902	58	2.534
-21	112.867	19	13.251	59	2.44
-20	106.732	20	12.635	60	2.35
-19	100.552	21	12.05	61	2.264
-18	94.769	22	11.496	62	2.181
-17	89.353	23	10.971	63	2.102
-16	84.278	24	10.473	64	2.026
-15	79.521	25	10	65	1.953
-14	75.059	26	9.551	66	1.883
-13	70.873	27	9.125	67	1.816
-12	66.943	28	8.721	68	1.752
-11	63.252	29	8.337	69	1.69
-10	59.784	30	7.972	70	1.631
-9	56.524	31	7.625	71	1.574
-8	53.458	32	7.296	72	1.519
-7	50.575	33	6.982	73	1.466
-6	47.862	34	6.684	74	1.416
-5	45.308	35	6.401	75	1.367
-4	42.903	36	6.131	76	1.321
-3	40.638	37	5.874	77	1.276
-2	38.504	38	5.63	78	1.233
-1	36.492	39	5.397	79	1.191
0	34.596	40	5.175	80	1.151
1	32.807	41	4.964	81	1.113
2	31.12	42	4.763	82	1.076
3	29.528	43	4.571	83	1.041
4	28.026	44	4.387	84	1.007
5	26.608	45	4.213	85	0.974
6	25.268	46	4.046	86	0.942
7	24.003	47	3.887	87	0.912
8	22.808	48	3.735	88	0.883
9	21.678	49	3.59	89	0.855
10	20.61	50	3.451	90	0.828
11	19.601	51	3.318	91	0.802
12	18.646	52	3.191	92	0.777
13	17.743	53	3.069	93	0.753
14	16.888	54	2.952	94	0.73

Table 4-5.2: Compressor discharge pipe temperature sensor resistance characteristics

Temperature	Resistance	Temperature	Resistance	Temperature	Resistance	Temperature	Resistance
(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)	(°C)	(kΩ)
-20	542.7	20	68.66	60	13.59	100	3.702
-19	511.9	21	65.62	61	13.11	101	3.595
-18	483.0	22	62.73	62	12.65	102	3.492
-17	455.9	23	59.98	63	12.21	103	3.392
-16	430.5	24	57.37	64	11.79	104	3.296
-15	406.7	25	54.89	65	11.38	105	3.203
-14	384.3	26	52.53	66	10.99	106	3.113
-13	363.3	27	50.28	67	10.61	107	3.025
-12	343.6	28	48.14	68	10.25	108	2.941
-11	325.1	29	46.11	69	9.902	109	2.860
-10	307.7	30	44.17	70	9.569	110	2.781
-9	291.3	31	42.33	71	9.248	111	2.704
-8	275.9	32	40.57	72	8.940	112	2.630
-7	261.4	33	38.89	73	8.643	113	2.559
-6	247.8	34	37.30	74	8.358	114	2.489
-5	234.9	35	35.78	75	8.084	115	2.422
-4	222.8	36	34.32	76	7.820	116	2.357
-3	211.4	37	32.94	77	7.566	117	2.294
-2	200.7	38	31.62	78	7.321	118	2.233
-1	190.5	39	30.36	79	7.086	119	2.174
0	180.9	40	29.15	80	6.859	120	2.117
1	171.9	41	28.00	81	6.641	121	2.061
2	163.3	42	26.90	82	6.430	122	2.007
3	155.2	43	25.86	83	6.228	123	1.955
4	147.6	44	24.85	84	6.033	124	1.905
5	140.4	45	23.89	85	5.844	125	1.856
6	133.5	46	22.89	86	5.663	126	1.808
7	127.1	47	22.10	87	5.488	127	1.762
8	121.0	48	21.26	88	5.320	128	1.717
9	115.2	49	20.46	89	5.157	129	1.674
10	109.8	50	19.69	90	5.000	130	1.632
11	104.6	51	18.96	91	4.849		
12	99.69	52	18.26	92	4.703		
13	95.05	53	17.58	93	4.562		
14	90.66	54	16.94	94	4.426		
15	86.49	55	16.32	95	4.294		
16	82.54	56	15.73	96	4.167		
17	78.79	57	15.16	97	4.045		
18	75.24	58	14.62	98	3.927		
19	71.86	59	14.09	99	3.812		

Table 4-5.3: Water side heat exchanger water inlet / outlet temperature sensor, backup heater exchanger outlet water temperature sensor and DHW temperature sensor resistance characteristics

Temperature

(°C)

91

92 93

94

95

96 97

98

99

100 101

102

103

104

105

Resistance $(k\Omega)$

4.4381 4.3022

4.1711

4.0446

3.9225

3.8046 3.6908

3.5810

3.4748

3.3724 3.2734

3.1777

3.0853

2.9960

2.9096

2.8262

Temperature	mperature Resistance Temperature Resistance Temperature Resistance					
(°C)	kesistance (kΩ)	(°C)	kesistance (kΩ)	(°C)	kesistance (kΩ)	
-30	867.29	10	98.227	50	17.600	
-29	815.80	11	93.634	51	16.943	
-28	767.68	12	89.278	52	16.315	
-27	722.68	13	85.146	53	15.713	
-26	680.54	14	81.225	54	15.136	
-25	641.07	15	77.504	55	14.583	
-24	604.08	16	73.972	56	14.054	
-23	569.39	17	70.619	57	13.546	
-22	536.85	18	67.434	58	13.059	
-21	506.33	19	64.409	59	12.592	
-20	477.69	20	61.535	60	12.144	
-19	450.81	21	58.804	61	11.715	
-18	425.59	22	56.209	62	11.302	
-17	401.91	23	53.742	63	10.906	
-16	379.69	24	51.396	64	10.526	
-15	358.83	25	49.165	65	10.161	
-14	339.24	26	47.043	66	9.8105	
-13	320.85	27	45.025	67	9.4736	
-12	303.56	28	43.104	68	9.1498	
-11	287.33	29	41.276	69	8.8387	
-10	272.06	30	39.535	70	8.5396	
-9	257.71	31	37.878	71	8.2520	
-8	244.21	32	36.299	72	7.9755	
-7	231.51	33	34.796	73	7.7094	
-6	219.55	34	33.363	74	7.4536	
-5	208.28	35	31.977	75	7.2073	
-4	197.67	36	30.695	76	6.9704	
-3	187.66	37	29.453	77	6.7423	
-2	178.22	38	28.269	78	6.5228	
-1	168.31	39	27.139	79	6.3114	
0	160.90	40	26.061	80	6.1078	
1	152.96	41	25.031	81	5.9117	
2	145.45	42	24.048	82	5.7228	
3	138.35	43	23.109	83	5.5409	
4	131.64	44	22.212	84	5.3655	
5	125.28	45	21.355	85	5.1965	
6	119.27	46	20.536	86	5.0336	
7	113.58	47	19.752	87	4.8765	
8	108.18	48	19.003	88	4.7251	
9	103.07	49	18.286	89	4.5790	

CLIVET SPA

Via Camp Lonc 25, Z.I. Villapaiera - 32032 Feltre (BL) - Italy Tel. + 39 0439 3131 - Fax + 39 0439 313300 - info@clivet.it

CLIVET GROUP UK Limited

4 Kingdom Close, Segensworth East - Fareham, Hampshire - PO15 5TJ - United Kingdom Tel. + 44 (0) 1489 572238 - Fax + 44 (0) 1489 573033 - enquiries@clivetgroup.co.uk

CLIVET GROUP UK Limited (Operations)

Units F5&F6 Railway Triangle Ind Est, Walton Road - Portsmouth, Hampshire - PO6 1TG - United Kingdom Tel. +44 (0) 2392 381235 - Fax. +44 (0) 2392 381243 - service@clivetgroup.co.uk

CLIVET ESPAÑA S.A.U.

C/ Bac de Roda, 36 - 08019 Barcelona - España Tel: +34 93 8606248 - Fax +34 93 8855392 - info@clivet.es

Av.Manoteras Nº 38, Oficina C303 - 28050 Madrid - España Tel. +34 91 6658280 - Fax +34 91 6657806 - info@clivet.es

CLIVET GmbH

Hummelsbütteler Steindamm 84, 22851 Norderstedt - Germany Tel. + 49 (0) 40 32 59 57-0 - Fax + 49 (0) 40 32 59 57-194 - info.de@clivet.com

CLIVET RUSSIA

Elektrozavodskaya st. 24, office 509 - 107023, Moscow, Russia Tel. + 74956462009 - Fax + 74956462009 - info.ru@clivet.com

CLIVET MIDEAST FZCO

Dubai Silicon Oasis (DSO), High Bay Complex, Office N. 20, PO BOX 342009, Dubai, UAE Tel. + 9714 3208499 - Fax + 9714 3208216 - info@clivet.ae

CLIVET AIRCONDITIONING SYSTEMS PRIVATE LIMITED

 $501/502, Commercial-1, Kohinoor City, Old Premier Compound, Kirol Road, Off L B S Marg, Kurla West-Mumbai 400\,070-India info.in@clivet.com$

www.clivet.com www.clivetlive.com

