옿ㄷ니루

Packaged monoblock heat pump for domestic hot water production

AQUA PLUS
SWAN-2 190-190S-300-300S RANGE

SIZE	190	300	190S	3005
HEATING CAPACITY KW	2,31	3,25	2,31	3,25

3 Features and benefits
5 Standard unit technical specifications
$7 \quad$ Accessories separately supplied
9 General technical data
12 Hydraulic connections
13 Aeraulic connections
14 Data for the UNI/TS 11300 calculation
15 Dimensional drawings

System Description

AQUA Plus is a specialised heat pump system for producing domestic hot water.
AQUA Plus reduces costs connected with the production of domestic hot water. Using heat pump technology, AQUA Plus is able to transform renewable energy contained in the air into heat, which it then uses to raise the temperature of water contained in the storage tank. The consumption of electrical power in this sequence is reduced to a minimum. AQUA Plus is 4 times more efficient than a traditional electrical boiler, which in economic terms means a 75% reduction in cost for electricity for the same amount of thermal power produced.

TOP Efficiency

AQUA Plus reaches the highest levels of efficiency present at this moment on the market. Thanks to the careful design of the cooling circuit, it has been placed in the class A+ according to the ErP Directive.
The high values of COP allow for significant savings in energy and operating costs, in addition to an increased in the use of renewable energy.

Enamel Steel Tank with heat exchanger wrapped around the tank

The innovative active electronic anode and the enamelled steel tank guarantee a high level of protection against corrosion. The exchanger (condenser) consists of an ALUMINIUM coil wrapped around the outside of the domestic hot water storage tank. This feature guarantees maximum safety because it prevents any possible contamination between the refrigerant and the water. Before the copper condenser is wrapped around the tank, it is shaped to obtain an innovative profile designed to maximize the surface in contact with the tank and improve thermal exchange.

Full Operating Limits

The use of the most advanced technologies, both in terms of components and in relation to regulating logic, allow AQUA to be used in extreme temperatures. AQUA can function within the air temperature range of $-20^{\circ} \mathrm{C}$ to $+43^{\circ} \mathrm{C}$ in combined operation (heat pump + electrical heating element) and even in the range of $-7^{\circ} \mathrm{C}$ to $+43^{\circ} \mathrm{C}$ with only the heat pump .
Moreover, it is possible to reach hot water temperatures exceeding $65^{\circ} \mathrm{C}$ using only the heat pump.

Advanced control options

AQUA Plus has a Modbus connection port for integration with third-party home automation systems.
The unit is also compatible with ELFOControl ${ }^{3}$ EVO, the Clivet supervision system that optimises operation of resistance systems. AQUA Plus can be integrated with photovoltaic panels thanks to its dedicated input, and is also set up for Smart Grid management.

User Interface

To control AQUA，it is possible to use the control panel mounted on the unit．
The control system was designed to be quick and intuitive for the user．All parameters are easily accessible with the 9 central buttons．

The control panel allows the user to view：
－current water temperature
－unit operating status
－the operating status of the compressor and the electric heating element
－any possible malfunction
and to set：
－the SET temperature of the accumulator
－the unit＇s schedule，up to six activation or deactivation times
－manual activation of the electric heating element
－manual activation of the anti－legionella disinfection cycle
－switching the unit on and off

REF	ICON	DESCRIPTION	REF	ICON	DESCRIPTION
1	Biol	On：screen locked	11	$\overbrace{\triangle}^{\prime}$	High temperature alarm Water temperature above $50^{\circ} \mathrm{C}$
3	－	Indicates the time	12	（1）	Unit in error／protection
4		6 programs can be set	13	VACATION	Unit works in VACATION mode
5	$\sqrt{2}$	Reserved	14	HYBRID	Unit in HYBRID mode
6	管安	Unit in disinfection cycle（antilegionella）	15	E－HEATER	Unit in E－HEATER mode
7	［	Compressor in operation		INVALID	An invalid button was pressed
8	¢	Buttons locked		SET TEMP	On：water temperature setting
9	"ْ̈⿴囗十丌	Unit connected to the solar signal or to the solar water pump		SET TIME	On：time setting
10	曺	Electric heater in operation			

Standard unit technical specifications

AQUA

Fan

Centrifugal fan with plastic profile blades, housed in aerodynamically shaped nozzle to increase efficiency and minimize sound level.

Evaporator

Evaporator coil with large surface which improves heat transfer and reduces defrost time in order to increase the seasonal efficiency.

Anodo

Electronic anode to ensure maximum protection and durability over time.

Handles

Lifting handles for easy installation and transportation.

Condenser

Condenser with aluminum coil, wrapped around the tank and thus avoid the possibility of water contamination for any leaks of refrigerant. The coil is suitably shaped to maximize the contact area with the fuel tank, it is also interposed with a conductive paste to improve heat exchange between the capacitor and the accumulation.

Compressor

Rotary ON/OFF Compressor using R134a on vibration rubber to minimize the transmission of vibration and noise.

Safety thermostats

- Automatic temperature reset thermostat (ATCO auto temperature cut off)
- Manual reset thermostat (TCO temperature cut off)

Modbus protocol

Allows serial connection to supervision systems, using Modbus as a communication protocol. Gives access to the entire list of operation variables, controls and alarms.

Electric heater

$1,5 \mathrm{~kW}$ electrical element can be used for heating when the temperatures is below $-7^{\circ} \mathrm{C}$ andVor to integrade with rigid air temperatures and high set temperatures.

Integration exchanger

Integration exchanger vitrified steel coil of $1.1 \mathrm{~m}^{2}$ on 190 L and $1.3 \mathrm{~m}^{2}$ on 300L with well for probe for regulation.

Tank

Steel storage tank for 280/180 liters of water, internally vitrified to completely isolate water from the metal to avoid corrosion problems.

Insulation

External insulation in polyurethane (thickness 50mm).

Appearance

SIZE 190

SIZE 300

SIZE 190S

SIZE 300 S

Accessories separately supplied

Additional fan
Additional high-efficiency radial fan that extends the unit's operating range by providing extra available pressure. Installation is only recommended in those systems where the extension of the air ducts is particularly far-reaching and complex.

Electical data

SIZE			190	300	190S	3005
Standard power input	(1)	V	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50
F.L.A. - Current absorbed at the maximum allowed conditions		A	0,25	0,41	0,25	0,41
F.L.I. - Power absorbed at full load (at the maximum allowed conditions)		W	50	80	50	80
M.I.C - Maximum inrush current		A	0,32	0,78	0,32	0,78

(1) Power supply 220-240/1/50 For non-standard power supply voltages,
contact the Clivet Technical Office
Units are compliant with provisions set forth in the European standards CEI EN
60204 and CEI EN 60335
Data refers to the additional fan only, to be added to the total data of the unit.

Aeraulic Connections

DUCTED INTAKE AND EXHAUST (recommended)
Install the additional fan on the exhaust ducting close to the unit.

Accessory connection cables

The accessory includes cables to facilitate connection to the circuit board for use of the following functions:

- Solar input (only for 190 S and 300 S): $220-240^{\sim}$ signal input for the solar control unit
- On/off input: contact for switching on/off the unit by external signal
- Modbus: connection for RS486 Modbus supervisory system protocol or ELFOControl3 EVO

Solar input (only for 190S and 300S)

On/off input

Modbus

	$\mathrm{L}=3000 \mathrm{~mm}$ (3X0.5MMQ)	BIANCO
Bianco		NERO
Nero		GIALLO

General technical data

1. Inlet water temperature $15^{\circ} \mathrm{C}$, accumulator set $45^{\circ} \mathrm{C}$, air on source side $15^{\circ} \mathrm{C} D . B / 12^{\circ} \mathrm{C}$ W.B.
2. The product complies with the European Directive ErP, which includes the Commission Delegated Regulation (EU) N. 812/2013 and the Commission Delegated Regulation N. 814/2013, Average Climate, Heat Pump Water Heater
3. The product complies with the European Directive ErP, which includes the Commission Delegated Regulation (EU) N. 812/2013 and the Commission Delegated Regulation N. 814/2013, Warmer Climate, Heat Pump Water Heater
4. The product complies with the European Directive ErP, which includes the Com
mission Delegated Regulation (EU) N. 812/2013 and the Commission Delegated Regulation N. 814/2013, Colder Climate, Heat Pump Water Heater
5. Data referred to completely ducted unit.
6. Maximum temperature that can be reached during anti-legionella mode (Disinfect) * It contains fluorinated greenhouse gases

Electrical data

SIZE			190	300	190S	3005
Power input	(1)	V	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50
F.L.A. - Current absorbed at the maximum allowed conditions		A	9,10	9,80	9,10	9,80
F.L.I. - Power absorbed at full load (at the maximum allowed conditions)		kW	2,10	2,25	2,10	2,25
M.I.C - Maximum inrush current		A	22,2	33,7	22,2	33,7

(1) Power supply 220-240/1/50

For non-standard power supply voltages, contact the Clivet Technical Office
Units are compliant with provisions set forth in the European standards CEI EN 60204 and CEI EN 60335
! Warning: when defining the correct size, verify that all absorption is compliant with current electrical supply contracts in force in the country of installation

Twu $\left[{ }^{\circ} \mathrm{C}\right]=$ temperatura acqua accumulo
Tae $\left[{ }^{\circ} \mathrm{C}\right]=$ temperatura aria ingresso scambiatore

1. Use range of the heat pump

2 Use range of the electrical heating element

AQUA 300-300S

[^0]
General technical data

Performances Curve

The following curves were obtained from performance tests carried out under dynamic mode. The inlet water temperature, which coincides with the initial status 0 , is temperature $10^{\circ} \mathrm{C}$. The different curves represent the specific parameter (heating time, heating capacity, COP) with different set temperature ($45^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}-65^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Heat UP

300

Te =Outdoor Air Temperature ${ }^{\circ} \mathrm{C}$
H = Heat Up Time (h)

Heating capacity

Te =Outdoor Air Temperature ${ }^{\circ} \mathrm{C}$
P = Heating Capacity (W)

COP

Te $=$ Outdoor Air Temperature ${ }^{\circ} \mathrm{C}$
C = COP

Below are some diagrams that give an idea of the hydraulic connections in the two versions of AQUA. The connection and design of the system must be done in conformity with national regulations that are currently in force.

Size 190-190S

Size 300-300S

Aeraulic connections

The unit must be installed inside the building, preferably in a technical room or a laundry room or a garage. At any rate, it is always preferable to avoid installing the unit near bedrooms or in rooms that must be protected from noise.
Outdoor installation is prohibited, as well as installation in places subject to external weather.
Examples below refer to the AQUA 190 version. For the AQUA 300 version, the expulsion and intake connections are inverted.

INTAKE AND EXPULSION DUCTS (recommended)

Channelling the intake and expulsion through ducts allows the unit to function with air taken from outside the house. Heat is extracted from the outdoor air, and used as a source for the heat pump. Later this same air is expelled outside the building. Therefore, unit operation does not cause an increase in heating requirements in the home. It is necessary to fit the system with correctly sized pipes in relation to the available pressure head supplied by the unit.

INTAKE DUCTS (conditioned)

EXPULSION DUCTS (conditioned)

Installation with an intake duct and free expulsion is recommended if there is a desire to use the air expelled by the unit, cold dehumidified air $\left(5-10^{\circ} \mathrm{C}\right.$ colder than the intake air), to cool the room. The unit must be installed preferably in a room that does not require heating, because the unit releases cold air into the environment and it would increase the cost of heating that room. The unit must be installed in a room with a minimum volume greater than 15 m 2 . The expulsion air flow must be guaranteed and cannot be blocked. It is necessary that the vents be correctly sized.

In this particular type of installation, the unit takes in air from the room where it is installed, extracts the heat and then expels that air outside the house. The unit must be installed in a room with suitable openings to allow the correct flow of air into the unit, which would prevent the air pressure in the room from falling. The unit must be installed in a room with a minimum volume greater than $15 \mathrm{~m}^{2}$.

Data for the UNI/TS 11300 calculation

Clivet S.p.A. declares that the data to be used for the calculation pursuant to UNI/TS 11300 part 4 of the efficiency of their heat pump are given in the following tables.
The data given in this document may be updated without advance notice by the manufacturer when upgrading his product range.

UNI/TS 11300 Part 4

AQUA

Terms and definitions
Tm = Supply Temperature
Te = Outdoor Air Temperature

SMART GRID management - Photovoltaic

	EVU Photovoltaic signal	SG Smart grid
Unit works normally	OFF	ON
Unit is turned off	OFF	OFF
Forced unit in DHW, even if it was off, with temperature increased to $70{ }^{\circ} \mathrm{C}$	ON	ON o OFF

Dimensional drawings

Compressor enclosure
7. Anode rod
Electrical panel
8. Water inlet $3 / 4$ " F
Control keypad
9. Water outlet $3 / 4$ " F
4. Power input
5. Condensate drain
6. Functional spaces
(R) Air inlet

WEIGHT DISTRIBUTION		
Operation weight	Kg	287
Shipping weight	Kg	126

Optional accessories may result in a substantial variation of the weight show in table

SWAN-2 $190 S$

[^1]8. Water inlet $3 / 4^{\prime \prime} \mathrm{F}$
9. Water outlet $3 / 4^{\prime \prime} F$
10. Solar inlet $3 / 4 " F$

WEIGHT DISTRIBUTION

Operation weight	Kg	310
Shipping weight	Kg	140

Optional accessories may result in a substantial variation of the weight show in table

DAASE0001_S_00
DATA/DATE 25/01/2021

Dimensional drawings

SWAN-2 190


```
Compressor enclosure 7. Anode rod
Electrical panel
8. Water inlet 3/4"F
Electrical panel
Power input
Condensate drain
Functional spaces
```

7. Anode rod

Water inlet $3 / 4$ "F
9. Water outlet $3 / 4^{\prime \prime} F$
(R) Air inlet
(M) Air supply

WEIGHT DISTRIBUTION		
Operation weight	Kg	412
Shipping weight	Kg	153

Optional accessories may result in a substantial variation of the weight show in table

8. Water inlet $3 / 4$ " F

1. Compressor enclosure
Electrical pane
2. Solar inlet $3 / 4 " F$
3. Control keypad
4. Condensate drain
5. Solar outlet $3 / 4^{\prime \prime} F$
6. Functional spaces
7. Anode rod
8. DHW recovery $3 / 4$ " F
(R) Air inlet
(M) Air supply

WEIGHT DISTRIBUTION

Operation weight	Kg	434
Shipping weight	Kg	172

Optional accessories may result in a substantial variation of the weight show in table

Dimensional drawings

SWAN-2 190L - PESE00001_Ventilatore aggiuntivo

[^2]$\frac{\text { Weight }}{\text { Power input }} \frac{\mathrm{Kg}}{\mathrm{V}} \frac{7,8}{200-240 / 1 / 50}$

Dimensional drawings

SWAN-2 300L - PESE00002_Ventilatore aggiuntivo

1. Power input
2. Electric fan (supply-return)
3. Lifting bracket (removed)
(R) Air inlet
(M) Air supply
$\frac{\text { Weight }}{\text { Power input }} \frac{\mathrm{Kg}}{\mathrm{V}} \frac{4,8}{200-240 / 1 / 50}$

FOR OVER 30 YEARS WE HAVE BEEN OFFERING SOLUTIONS TO ENSURE SUSTAINABLE COMFORT AND THE WELLBEING OF PEOPLE AND THE ENVIRONMENT

 www.clivet.com
읗ㄷ니루

CLIVET SPA

[^0]: Twu $\left[{ }^{\circ} \mathrm{C}\right]=$ temperatura acqua accumulo
 Tae $\left[{ }^{\circ} \mathrm{C}\right]$: temperatura aria ingresso scambiatore

 1. Use range of the heat pump
 2. Use range of the electrical heating element
 3. Use range of the electrical heating element only in Anti-Legionella mode (Disinfect)
[^1]: 1. Compressor enclosure
 2. Electrical panel
 3. Control keypad
 4. Power input
 5. Condensate drain
 6. Functional spaces
 7. Anode rod
[^2]: 1. Power input
 2. Electric fan (supply-return)
 3. Lifting bracket (removed)
 (R) Air inlet
 (M) Air supply
