Standard Port Ball Hose Bibcock For Plumbing System W201 serials

Description

Ball hose bibcocks with male and hose union connections for plumbing. Strong hot forged body. Nickel plated outside and brass color inside. Standard port. Strong steel lever handle in blue color.

Versions and product codes

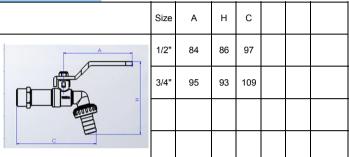
Product code	Description	Size	Use	Handle color
W20111N1012	Ball hose bibcock 1/2"	1/2"	Plumbing	Blue
W20111N1034	Ball hose bibcock 3/4"	3/4"	systems	Diue

Techinical data

Main features and materials

- Strong hot forged body
- · Suitable for plumbing systems
- Connections: male threads (ISO228), hose union connection
- · Standard port
- UNI EN 12165 CW617N nickel plated brass valve
- Stem with double O-rings preventing leakage, more reliable than single O-ring
- Steel lever handle (blue color for water use), with coating and strong

Field of application


• Max. working pressure at 20°C with water:

- 1.6 Mpa (16 Bar) for 1/2", 3/4"
- \bullet Max. working temperature for water: 60 $^\circ\!\mathrm{C}$
- \bullet Min. working temperature for water: -5 $^\circ\!{\rm C}$

torque resistance:

Size, DN	15	20			
Max. Torque N.m	75	100			

Dimensions:

Product Specifications

W201 serials

Ball hose bibcock with male threads and hose union connections for plumbing systems. UNI EN 12165 CW617N nickel plated outside, brass color inside. Standard port. Strong hot forged body. Steel lever handle with blue color for water plumbing use. Stem with double O-rings preventing leakage, much more reliable

and longer time use. Max. working pressure at 20 $^\circ\!\!\mathbb{C}$ with water:

1.6 Mpa (16 Bar) for 3" and 4".

Max. working temperature for water: 60 $^\circ\!\mathrm{C}.$ Min. working temperature for water: -5 $^\circ\!\mathrm{C}$